The present invention generally relates to an electromagnetic switching device. In particular, it relates to a contactor, having an electromagnetic drive apparatus and having at least one electrical contact,
Switching devices are generally known. Merely by way of example, reference is made to U.S. Pat. Nos. 3,745,492, 5,844,186 and WO 99/56295 A1.
In order to ensure that electrical systems are not live while work is being carried out on or in these systems, main switches and switching devices with disconnector characteristics are specified. On the one hand, these must reliably signal, either by way of a visible disconnection gap or by an indication which reliably indicates the switching state of the device, the disconnection of the system from the supply. In particular, however, they must allow blocking which reliably prevents accidental connection. Furthermore, the switching point must reliably withstand an increased voltage. Furthermore, predetermined creepage currents must not be exceeded.
Devices of this type are described, for example, in IEC 60947-2 and IEC 60947-3. These Standards are implemented in electrical devices such as disconnectors, load disconnectors, safety load disconnectors and circuit breakers with a disconnection function, and similar devices.
Electromagnetic switching devices according to the prior art as cited above satisfy these requirements.
An object of an embodiment of the present invention is to provide a further electromagnetic switching device of the generic type.
An object may be achieved
If the contact can be blocked in a locking element holder by the insertion of the locking element, the switching device may have a particularly simple physical design. The locking element holder may in this case alternatively be open on both sides or on only one side.
If the locking element is held captive in the additional appliance, no separate element is required for blocking the contact. Furthermore, in this case, the locking element may be matched to the additional appliance, in particular to any locking element holder. Tolerances are therefore known in advance, and can be minimized.
If the additional device has an additional switch which can be connected in a circuit via which the pull-in current can be applied to the electromagnetic drive apparatus, a power supply for the electromagnetic drive apparatus can be interrupted at the switching device.
If the additional switch is arranged and designed such that it is opened when the contact is mechanically blocked, it is not possible for opening of the coil circuit to be accidentally prevented.
The connection between the additional appliance and the basic appliance may alternatively be detachable or non-detachable. At least when the contact is mechanically blocked in the disconnected position, the additional appliance should, however, be connected non-detachably to the basic appliance.
The connection between the basic appliance and the additional appliance is particularly simple if the additional appliance is latched to the basic appliance.
As a result of the configuration of the basic appliance, the additional appliance should be adjacent to the basic appliance on an appliance side which runs at right angles to a movement direction of the contact link support.
If the switching device can be connected to an auxiliary switch housing, in which an auxiliary switch may be arranged which can be operated by the contact link support together with the contact, the switching device can be used more flexibly. The auxiliary switch is in this case preferably connected to the contact link support without any play. However, alternatively, the connection may be direct or indirect.
Further advantages and details will become evident from the following description of example embodiments in conjunction with the drawings in which, illustrated in outline form:
The electromagnetic drive apparatus 2 has a coil 2′ and a coil core 2″. A pull-in current I can be applied to the coil 2′ via a drive unit 6. In this case, the armature 3 is pulled in, thus moving the contact link support 4, and, with it, the contact link 5″ to a bridging position in which the contact 5 is closed. This state is illustrated in
When, on the other hand, no pull-in current I is applied to the coil 2″, the contact link support 4 and, with it, the contact link 5″ are moved by way of a return spring to a disconnected position. In this position, the contact 5 is open. This position is illustrated in
During the movement from the disconnected position to the bridging position, and vice versa, the contact link support 4 is moved in a movement direction x. As can be seen from
The additional appliance 7 is likewise a component of the electromagnetic switching device, and is connected, for example latched, to the basic appliance 1. The additional appliance 7 has an extension 8 for the contact link support 4. The extension 8 is connected to the contact link support 4—preferably without any play—so that the extension 8 is positively guided by the contact link support 4.
The additional appliance 7 has a locking element holder 9 which is continuous, that is to say it is open on both sides, and the extension 8 has a corresponding recess 10. When the contact link support 4—and with it the contact 5—is in the disconnected position, a locking element 11 can thus, as is shown in
The locking element 11 is thus connected to the additional appliance 7 (and to the switching device), such that it is blocked in the disconnected position of the contact link support 4, by operation of a blocking element 13, in this case the closing element 13 of the padlock 12. When the locking element 11 is in the locking element holder 9, the extension 8 and, with it, the contact link support 4 and the contact 5 as well are mechanically blocked in the disconnected position.
These elements 4, 5, 8 are thus locked in the disconnected position even when the pull-in current I is applied to the electromagnetic drive apparatus 2. As can be seen, the locking element 11 can in this case be inserted into the locking element holder 9 when the switching device is completely installed.
It is possible for the connection of the additional appliance 7 to the basic appliance 1 to be detachable. However, it is preferably non-detachable, at least when the contact 5 is mechanically blocked in the disconnected position. Generally, it is even advantageous for the additional appliance 7 to be permanently and non-detachably connected to the basic appliance 1.
As can be seen from
It is therefore impossible to accidentally connect the electromagnetic drive apparatus 2 when the contact link support 4 is blocked. This therefore avoids any possible damage resulting from a high current load on the coil 2′ lasting for an excessively long time.
The embodiments shown in
By way of example, the auxiliary switch housing 15 may be latched to the additional appliance 7. An auxiliary switch 16 is arranged in the auxiliary switch housing 15. The auxiliary switch 16 is operated by the contact link support 4 together with the contact 5.
Owing to the subdivision of the switching device into the basic appliance 1 and the additional appliance 7, the auxiliary switch 16 can be operated by the contact link support 4 only via the extension 8, and thus indirectly. In addition, direct operation would also be possible with a corresponding integral configuration of the switching device. In any case, however, the auxiliary switch 16 should be operable by the contact link support 4 without any play.
In the embodiment shown in
As can be seen from
The refinement of the electromagnetic switching device according to an embodiment of the invention thus allows disconnector characteristics to be added to the electromagnetic switching device in a simple manner.
Exemplary embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
202 20 482.0 | Oct 2002 | DE | national |
This application is the national phase under 35 U.S.C. § 371 of PCT International Application No. PCT/DE2003/002577 which has an International filing date of Aug. 27, 2003, which designated the United States of America and which claims priority on German Patent Application number DE 202 20 482.0 filed Oct. 2, 2002, the entire contents of which are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/02577 | 8/27/2003 | WO | 6/13/2006 |