This application claims priority to Japanese Patent Application No. 2014-029194, filed Feb. 19, 2014, and is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an electromagnetic valve for controlling the flow of a fluid.
2. Description of the Related Art
In the past and on-going practice, electromagnetic valves are used for various usages and applications (see Reference (1) in the following Related Art List, for instance). In order to control such a widely used electromagnetic valve, a PWM (Pulse Width Modulation) control is employed in terms of reducing the hysteresis in the valve opening characteristics and achieving the power saving, for instance. While a relatively large electric power is required at the power-on of the electromagnetic valve, a smaller power than that at the power-on is required during a stably controlled state (steady state). Thus, keeping the duty ratio of a holding current, during a steady state, lower than that of a starting current helps save the electric power. In particular, there are cases where the magnetic attractive force gets larger than necessary when a fixed iron core and a movable iron core are brought close to each other. Thus, reducing the duty ratio to a degree that it is necessarily and sufficiently small allows the power saving to be further promoted.
(1) Japanese Unexamined Patent Application Publication No. 2000-170945.
Nevertheless, such an electromagnetic valve as described above imposes a restriction in the size of a solenoid. Thus, reducing the magnetic attractive force does not result in a significant reduction in the holding current. For this reason, this electromagnetic valve still had room for improvement.
A purpose of the present invention is to provide an electromagnetic valve capable of reducing the holding current during a steady state.
One embodiment of the present invention relates to an electromagnetic valve driven by a solenoid. The solenoid includes: a cylindrical bobbin; an electromagnetic coil wound around the bobbin; a yoke that surrounds the electromagnetic coil; a fixed iron core that is fixed, coaxially with the bobbin, to the yoke; and a movable iron core arranged counter to the fixed iron core inside the bobbin in a direction of axis line. The movable iron core includes: a first iron core part that is inserted into the bobbin such that the first iron core part is displaceable in the direction of axis line; and a second iron core part formed integrally with the first iron core part in a position opposite to the fixed iron core, the second iron core part being arranged counter to an end surface of the yoke outside the bobbin in the direction of axis line.
By employing this embodiment, the movable iron core is provided with the second iron core part, which is arranged counter to the yoke in a position located outside the bobbin. Thereby, an attractive force receivable area for the electric conduction amount can increase. As a result, a large attractive force can be obtained when power is being supplied to the solenoid. In other words, for the same supply current value, a larger magnetic attractive force is obtained than when the movable iron core has the first iron core part only. More specifically, increased is an extra or surplus attractive force, which is generated when the fixed iron core and the movable iron core are brought close to each other during a steady state; as a result, the holding current can be reduced by the increased amount of surplus current. This can further promote the power saving.
The invention will now be described by reference to the preferred embodiments. This does not intend to limit the scope of the present invention, but to exemplify the invention.
The present invention will now be described in detail based on preferred embodiments with reference to the accompanying drawings. In the following description, for convenience of description, the positional relationship in each structure may be expressed with reference to how each structure is depicted in Figures.
The present embodiment is a constructive reduction to practice of the present invention where an electromagnetic valve according to the preferred embodiments is used as a control valve installed in a fuel cell vehicle. This electromagnetic valve is installed in a reaction gas supply passage that connects a supply source of reaction gas and a fuel cell. The electromagnetic valve is opened or closed according to an electric conduction state of a solenoid, and regulates the feed rate of reaction gas to the fuel cell.
A lead-in port 10 through which the reaction gas (hydrogen gas) is led in from an upstream side (supply source side) is provided on one lateral side of the body 5. A lead-out port 12 through which the reaction gas is led out to a downstream side (fuel cell side) is provided on the opposite lateral side thereof. A valve hole 14 is provided midway in an internal passage that connects the lead-in port 10 and the lead-out port 12.
A mounting hole 16 for mounting the solenoid 3 is provided in a center of an upper-half portion of the body 5, and the mounting hole 16 is opened upward. A valve chamber 18 is defined in between the mounting hole 16 and the valve hole 14. The mounting hole 16 and the valve chamber 18 are vertically divided by a partition plate 20 and a diaphragm 22. A valve element 24 is so provided as to face the valve hole 14.
A circular boss 26 is raised at a bottom center of the valve chamber 18, and the valve hole 14 is so formed as to run through the circular boss 26. The valve hole 14 is provided along an axis line of the solenoid 3 and communicates with the lead-out port 12 by way of a communicating passage 28. A valve seat 30 is formed on an upper-end surface of the circular boss 26. A valve section is closed and opened when the valve element 24 touches and leaves the valve seat 30, respectively. An upper-end surface of the valve element 24 abuts against a lower-surface center of the diaphragm 22. A spring 32 (functioning as a “biasing member”) that biases the valve element 24 in a valve opening direction is set between the valve element 24 and the body 5. A communicating passage 34, through which the lead-in port 10 and the valve chamber 18 communicate, is formed.
The diaphragm 22 is so placed as to cover a bottom of the mounting hole 16, and is so supported as to be held down from above by the partition plate 20, which has been inserted into the mounting hole 16. An O-ring 36 for sealing is set between the bottom of the mounting hole 16 and the diaphragm 22. Both the partition plate 20 and the diaphragm 22 extend in a direction perpendicular to the axis line of the solenoid 3. An insertion hole 38 is formed in a center of the partition plate 20, so that a central portion of the diaphragm 22 is exposed upward therefrom. The diaphragm 22 is deformable, in an upward direction, at a central area thereof corresponding to the insertion hole 38.
The solenoid 3 includes a cylindrical bobbin 40, an electromagnetic coil 42 wound around the bobbin 40, a yoke 44 that surrounds the electromagnetic coil 42, a fixed iron core 46 that is fixed coaxially to an upper-half portion of the bobbin 40, and a movable iron core 48 arranged counter to the fixed iron core 46 inside the bobbin 40 in the direction of axis line. The movable iron core 48 is inserted into a lower-half portion of the bobbin 40.
The yoke 44 is configured by assembling a first yoke 50, which supports the bobbin 40 from below, and a second yoke 52, which surrounds components parts of the solenoid 3 from above. The first yoke 50 is of a bottomed cylindrical shape, and an opening end thereof faces downward so as to be fitted into the mounting hole 16. A working chamber 54 is formed between the first yoke 50 and the diaphragm 22. The bobbin 40 is secured such that a lower end thereof is fitted to a fitting groove provided on an upper surface of the first yoke 50.
The second yoke 52 is obtained by bending and forming a plate-shape magnetic substance in a convex-shape manner, and both end parts of the thus bent second yoke 52 are secured on an upper surface of the body 5 by bolts 56, respectively. This configuration and arrangement enable an underside of the second yoke 52 to press down an upper surface of the first yoke 50 and therefore prevent the falling-off of the first yoke 50. Also, this configuration and arrangement enable the second yoke 52 to press down an upper surface of the fixed iron core 46 from above and therefore prevent the falling-off of the component parts of the solenoid 3.
The fixed iron core 46, which is of a cylindrical shape, is inserted into the upper-half portion of the bobbin 40 from above. A flange portion 58, which protrudes radially outward, is provided at an upper end of the fixed iron core 46, and abuts against the second yoke 52. A lower end portion of the fixed iron core 46 is of a stepped shape such that the inside diameter of the lower end portion thereof becomes larger downwardly.
On the other hand, the movable iron core 48 is configured such that a first iron core 60 (functioning as a “first iron core part”), which is inserted into the lower-half of the bobbin 40, and a second iron core 62 (functioning as a “second iron part”), which is placed in the working chamber 54, are concentrically assembled together. The first iron core 60 is of a stepped cylindrical shape, and an upper-end opening thereof is of a stepped shape complementary to that of the lower end portion of the fixed iron core 46. An elongated operatively-coupled portion 64 is provided downward starting from a lower-end center part of the first iron core 60.
The operatively-coupled portion 64 is coupled to the valve element 24 by way of the diaphragm 22, so that the movable iron core 48 and the valve element 24 are operable integrally with each other, namely can move together. In this case, the diaphragm 22 varies its position, namely is displaceable, while the diaphragm 22 is being held between a lower end surface of the operatively-coupled portion 64 and an upper end surface of the valve element 24. An external thread 66 with which to screw a nut 65 is provided on an outer periphery of the operatively-coupled portion 64. A spring 67 (functioning as a “biasing member”), which biases the movable iron core 48 in a direction separating the movable iron core 48 away from the fixed iron core 46 is set between the first iron core 60 and the fixed iron core 46.
The second iron core 62 is disk-shaped and has an insertion hole 68 in a center thereof. As illustrated in
Now, refer back to
Since, in the present embodiment, the separating plate 70 is designed to function as an alignment mechanism, there is provided no sleeve that enables the movable iron core 48 to be slidably supported. Thus, no sliding resistance is applied on the movable iron core 48, thereby suppressing the loss of magnetic attractive force. Also, the present embodiment is advantageous in that no abrasion powder resulting from the sliding movement is produced.
There is formed a relatively large gap or spacing between the movable iron core 48 and the bobbin 40. There is formed a through-hole 80 that runs through the fixed iron core 46 in the direction of axis line, and there is also formed a through-hole 82 in an upper center of the second yoke 52. Air is led into the working chamber 54 through these through-holes and the gap. In other words, the working chamber 54 is filled by atmospheric air pressure that serves as a reference pressure.
When, on the other hand, the solenoid 3 is set to a conducting state where the solenoid 3 is turned on as illustrated in
At this time, as shown in
In the present embodiment, as for the areas where the magnetic gaps are formed, the facing area between the second iron core 62 and the first yoke 50 is larger than that between the first iron core 60 and the fixed iron core 46. Thus, making the magnetic gap between the second iron core 62 and the first yoke 50 smaller helps improve the magnetic attractive force. In the light of this, as described above, the magnetic gap between the second iron core 62 and the first yoke 50 is set smaller than that between the fixed iron core 46 and the first iron core 60.
Also, ensuring in this manner that the magnetic gap between the fixed iron core 46 and the first iron core 60 is relatively larger prevents the collision between the fixed iron core 46 and the movable iron core 48. Note that although the second iron core 62 hits the first yoke 50 with the separating plate 70 being placed between the second iron core 62 and the first yoke 50, no large hitting sound occurs therebetween. This is because a reaction force exerted on the second iron core 62 gets larger as the separating plate 70 is gradually compressed.
In such an opening and closing operation process of the electromagnetic valve 1, the movable iron core 48 is stably guided by the separating plate 70 along the axis line. In other words, since the outer peripheral edge of the separating plate 70 is firmly supported by an inner circumferential surface of the first yoke 50, the change of axis line in the separating plate 70 during a deformation process, where the separating plate 70 is compressed, is prevented or suppressed. As a result, the movable iron core 48 is supported at a center of the separating plate 70 and is stably guided along the axis line. Since the separating plate 70 is nonmagnetic, the present embodiment is also advantageous in that a residual magnetic quantity, which is produced when the conduction state (on/off) of the solenoid 3 is switched from on to off, can be reduced. Selecting the plate thickness of the separating plate 70 can regulate the magnitude of the surplus attractive force in the valve section.
As shown in
Accordingly, when the opening and closing of the electromagnetic valve are to be controlled, the setting thereof should be made such that the magnetic attractive force generated by turning on the solenoid exceeds its lower-limit attractive force. Thus, in the comparative example represented by the broken line in
In this regard, by employing the present embodiment represented by the solid line in
In other words, as shown in
As described above, by employing the present embodiment, the movable iron core 48 is provided with the second iron core 62, which is disposed counter to the yoke 44 in a position located outside the bobbin 40. This configuration and arrangement increases the attractive force according to the electric conduction amount supplied to the solenoid 3. Then the relationship between this electric conduction amount supplied thereto and the attractive force is made good use of. And the control is performed such that the holding current is suppressed to a smaller value while the attractive force required during a steady state is ensured. As a result, the power saving can be further promoted.
An electromagnetic valve according to a second embodiment differs from the first embodiment in that a permanent magnet is placed within the solenoid and a small magnetic attractive force is produced even while no power is supplied to the solenoid. A description is hereinbelow given centering around different features from the first embodiment. Note that the structural components similar to those of the first embodiment are given the identical reference numerals and the repeated description thereof is omitted.
An electromagnetic valve 201 is configured by assembling a valve unit 2 and a solenoid 203. A disk 210 made of a magnetic substance is set between the flange portion 58 and the bobbin 40. Also, a permanent magnet 212 is set between the second yoke 52 and the disk 210. The permanent magnet 212, together with the fixed iron core 46, the movable iron core 48 and the yoke 44, form an auxiliary magnetic circuit (hereinafter referred to as “secondary magnetic circuit” also) even while no power is supplied to the solenoid 203. The magnetic poles of the permanent magnet 212 are arranged in such a manner as to be able to form the secondary magnetic circuit. However, the magnetic attractive force producible by the secondary magnetic circuit is smaller than that by the magnetic circuit formed when power is supplied to the solenoid 203 (hereinafter the latter magnetic circuit is referred to as “main magnetic circuit” also).
A separating plate 270 according to the second embodiment is nonmagnetic and is configured roughly similar to the separating plate 70 according to the first embodiment, excepting that the size thereof in a height direction is larger than that of the separating plate 70. The main body of the separating plate 270 is not set between the first yoke 50 and the second iron core 62 but is set between the second iron core 62 and the nut 65, instead. As a result, when the solenoid 203 is in an electrically conducting state, an underside surface of the first yoke 50 and an upper surface of the second iron core 62 abut on each other and therefore the magnetic gap therebetween becomes zero. However, the fixed iron core 46 and the first iron core 60 do not abut on each other even when the solenoid 203 is in the electrically conducting state, and a predetermined magnetic gap is maintained in between them. Similar to the first embodiment, the separating plate 270 can function as the alignment mechanism of the movable iron core 48.
As described above, the first yoke 50 and the second iron core 62 are arranged such that they can be abutted on each other. Thus, for the same supply current value, the magnetic attractive force can be made larger than that in the case of the first embodiment. When both the first yoke 50 and the second iron core 62 abut on each other, the secondary magnetic circuit is also formed by the permanent magnet 212 and therefore the additional magnetic attractive force thereby can also be obtained. As a result, the value of supply current to the solenoid 203 during a steady state can be lowered than that in the first embodiment and thereby further power saving can be achieved.
Also, the duty ratio of the holding current can be 0% if a magnet having a larger magnetic force is selected as the permanent magnet 212. In such a case, the valve section needs to be restored to a closed state when the solenoid 203 is turned off (nonconducting state). For this reason, for example, a not-shown cancelation rod may be inserted into a through-hole formed in the fixed iron core 46, so that the valve section may be restored to a closed state by manually pushing the movable iron core 48. Or alternatively, the current conduction direction to the solenoid 203 may be temporarily reversed in a PWM circuit so as to electrically restore the valve section to a closed state. For example, a reverse current may be delivered to the solenoid 203 for a moment (e.g., one second or less), so that an electromagnetic force resisting the magnetic force of the permanent magnet 212 may be generated.
The description of the present invention given above is based upon illustrative embodiments. These embodiments are intended to be illustrative only and it will be obvious to those skilled in the art that various modifications could be further developed within the technical idea underlying the present invention.
In the above-described embodiments, an example is shown where the first iron core (first iron core part) and the second iron core (second iron core) are separately prepared and then they are assembled together so as to form the movable iron core. In a modification, the first iron core part and the second iron core part may be formed integrally with each other so as to form the movable iron core.
Though not mentioned in the first embodiment, the provision of the separating plate 70 may be omitted. Similarly, in the second embodiment, the provision of the separating plate 270 may be omitted. However, in such a case, a guiding member, other than the separating plate 70 or 270, capable of guiding the movable iron core 48 along the axis line is preferably provided.
Though not mentioned in the first embodiment, the electromagnetic valve may be configured such that the minimum value of magnetic gaps between the fixed iron core 46 and the movable iron core 48 is smaller than the thickness of the separating plate 70. However, the magnetic gap therebetween is preferably set such that the fixed iron core 46 and the first iron core 60 do not collide with each other when power is supplied to the solenoid 3.
In the above-described embodiment, an example is shown as in
In the above-described second embodiment, an example is shown where the permanent magnet 212 is placed between the yoke 44 (second yoke 52) and the fixed iron core 46. In a modification, a permanent magnet may be placed between the yoke 44 (first yoke 50) and the movable iron core 48. Or alternatively, a permanent magnet may be placed between the first yoke 50 and the second yoke 52. In other words, the permanent magnet may preferably be placed by aligning the polarities such that the secondary magnetic circuit can be formed in parallel with the main magnetic circuit; thus, the position of the permanent magnet to be placed and/or the number of permanent magnets used may be appropriately selected.
In the above-described embodiment, an example is shown where the normally-closed valve (where the valve section is closed while the solenoid is turned off) is used as the electromagnetic valve. Instead, the electromagnetic valve may be configured as a normally-opened valve where the valve section is fully opened, while the solenoid is turned off, and is closed while it is turned on. For example, the positional relationship of the fixed iron core 46 and the movable iron core 48 may be reversed, namely vertically interchanged. In such a modification, for example, the operatively-coupled portion 64 may be so provided as to penetrate the fixed iron core 46, and the valve element 24 is integrally coupled to a tip of the operatively-coupled portion 64. In this case, the second iron core 62 is arranged opposite to above the bobbin 40.
The present invention is not limited to the above-described embodiments and modifications only, and those components may be further modified to arrive at various other embodiments without departing from the scope of the invention. Also, various other embodiments may be further formed by combining, as appropriate, a plurality of structural components disclosed in the above-described embodiments and modification. Also, one or some of all of the components exemplified in the above-described embodiments and modifications may be left unused or removed.
Number | Date | Country | Kind |
---|---|---|---|
2014-029194 | Feb 2014 | JP | national |