The present invention relates to an electromagnetic valve, in particular for slip-controlled motor vehicle brake systems.
DE 43 39 305 A1 discloses an electromagnetic valve of binary operation for use in a slip-controlled motor vehicle brake system, the valve closure member of which remains either in a closed or a fully opened switch position in relation to the valve seat. To avoid the undesirable switching noise of the electromagnetic valve, a hydraulically operated switching piston is arranged in the electromagnetic valve, switching into a position that throttles the valve passage when a defined pressure difference is reached. The effort in construction entailed for noise reduction by hydraulically throttling the pressure fluid is significant.
In view of the above, it is an object of the invention to improve an electromagnetic valve of the indicated type to the effect that the above-mentioned shortcoming is avoided.
In a per se known fashion, the magnet armature 10 moves in the direction of the magnet core 11 during energization of the magnet coil 13 so that the valve closure member 9 shaped at the valve tappet 1 interrupts the pressure fluid connection between a pressure fluid inlet and a pressure fluid outlet channel 14, 15 that is normally open in the basic position, in opposition to the effect of a valve spring 4 interposed between the valve tappet 1 and the valve seat member 2.
The electromagnetic valve is meant for use in slip-controlled motor vehicle brake systems, and its valve closure member 9 cooperating with the magnet armature 10 is lifted in the basic position from the valve seat member 2 by means of the valve spring 4 that is arranged between the valve tappet 1 and the valve seat member 2. In the electrically energized valve position, the valve closure member 9 moves in the direction of the valve seat member 2, and the magnet armature 10 moves in the direction of the magnet core 11. The special feature is that the magnet coil 13 is energized by means of three different switching current values I1, I2, I3 for reducing the valve switching noise. In the electrically non-energized condition of the magnet coil 13, the first switching current value I1=0 so that the valve closure member 9 is completely opened due to the valve spring 4. In the condition partly energized by means of the second switching current value I2 which is higher than the first switching current value I1 but lower than the third switching current value I3, the valve closure member 9 opens a throttle cross-section at the valve seat member 2. To be able to keep this throttle position, it needs a defined geometric design of the valve seat member 2 and the valve tappet 1. Valve closure member 9 at the valve tappet 1 has a preferably spherical contour with a diameter of 1.8 to 2.2 millimeters for this purpose. This corresponds to a sealing diameter at the valve seat of 0.9 to 1.1 millimeters. The valve seat angle amounts to 120 degrees herein.
In the fully energized condition, the electromagnetic valve is closed by the effect of the third switching current value I3. This permits noise reduction without structural modification of the electromagnetic valve.
A tandem master cylinder is connected as a brake pressure generator 3 to the pressure fluid inlet channel 14 of the electromagnetic valve illustrated in
Based on the electrically non-energized condition I1 of the magnetic coil 13 in which the electromagnetic valve is initially completely open, as shown in the drawings, in a brake pressure control operation the electromagnetic valve is principally switched into a fully energized condition I3 where it is completely closed. Subsequently, it is opened electrically only in part (condition I2) for noise reduction, and it is switched to re-assume the completely closed condition I3 only subsequently. Details regarding the control sequence are referred to in the description relating to
The valve spring 4 is preferably configured as a helical spring and has a progressive spring characteristic curve, the spring force of which is rated so that the valve closure member 9 remains in the partly opened, noise-reducing switching position when the magnet coil 13 adopts its condition partly energized with the second switching current value I2.
For illustrating the hydraulic pressure difference applied to the valve closure member 9 in the partly opened switching position, a means is provided sensing the hydraulic pressure that prevails upstream and downstream of the valve closure member 9. It is of great significance to determine the pressure difference as exactly as possible by way of appropriate means because in the partly opened condition of the electromagnetic valve, the electric switching current value I2 that is necessary for the partial opening of the electromagnetic valve will no longer be sufficient to keep the electromagnetic valve open starting from a defined pressure difference.
As a means for sensing the hydraulic pressure difference, e.g. pressure sensors 6 are well suited that are connected to the brake circuit upstream and downstream of the valve closure member 9. The pressure sensor signals representative of the pressure difference at the valve closure member 9 are evaluated in an electronic controller 20 actuating the magnet coil 13.
According to the illustrated pattern, the electromagnetic valve is inserted into a brake pressure line of a slip-controlled motor vehicle brake system connecting the brake pressure generator 3 to the wheel brake 5 so that alternatively to the pressure sensing by means of pressure sensors 6, the pressure difference can be sensed by appropriate software in a characteristic field for a pressure model, for what purpose the electronic controller 20 actuating the magnet coil 13 is appropriate. The pressure model represents the pressure variation in the wheel brake 5 and in the brake pressure generator 3. Advantageously, it is possible to dispense with the comparatively expensive pressure sensor equipment by using the pressure model.
The pressure model representative of the pressure variation in the wheel brake 5 is computed based on the vehicle-related and brake-specific parameters. Among these parameters is data relating to the vehicle deceleration, the pilot pressure in the brake pressure generator, and the brake pressure increase and brake pressure decrease characteristics. The calculation of the pressure model for the brake pressure generator 3 takes into account the number of the brake pressure increase pulses and/or the duration of the brake pressure increase pulses necessary to complete the desired brake pressure increase by actuating the magnet coil 13. Further, the pressure model for the wheel brake 5 is included in the calculation of the pressure model for the brake pressure generator 3.
The brake pressure control operation described herein is based on a so-called current ramp actuation of the electromagnetic valve, whereby lower pressure increase gradients are achieved due to the throttling in the electromagnetic valve, which gradients permit reducing the valve noise and the pedal pulsation during brake pressure control.
Instead of the initially proposed electromagnetic valve that acts as an inlet valve for a brake system and adopts three different switch positions for noise reduction and minimizing the pedal pulsations with three different current values I1, I2, I3, an electromagnetic valve is disclosed to solve the object at issue (based on the valve construction shown in
In this respect,
The pressure variation linearly rising from the zero point initially represents the slip-free brake pressure increase initiated by the brake pressure generator 3 because the electromagnetic valve is non-energized (I=0). When the allowable brake pressure value (point A) is reached, the magnet coil 13 is energized with the switching current value I1, with the result that the valve closure member 9 assumes its throttled position. In addition, the outlet valve 7 connected to wheel brake 5 (cf
Number | Date | Country | Kind |
---|---|---|---|
10160427.0 | Dec 2001 | DE | national |
10160428.9 | Dec 2001 | DE | national |
10162186.8 | Dec 2001 | DE | national |
10162165.5 | Dec 2001 | DE | national |
10219426.2 | May 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP02/13699 | 12/4/2002 | WO |