Electromagnetically operated unit, in particular a clutch, brake and/or lock

Abstract
An electromagnetically operated unit for controlling a radial connection. The unit has a first device which is optionally coupleable with a second device. The second device includes a magnet and/or electromagnet. The unit also has radially movable switching elements that are supported about the circumference of one of the devices, which additionally has contoured and/or frictional surfaces, which mate with respective contoured and/or frictional surfaces of the other one of the devices, thus effectuate engagement of the first and second devices. When the unit is designed with a closed current system the switching elements are biased to disengage when current is applied to the magnet and with an open current system the switching elements are biased to engage, against the force of a spring, when current is applied to the magnet.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be explained in more detail hereinafter in the exemplary attached FIGS., in which:



FIG. 1 is a schematic top view of a preferred embodiment of an electromagnetically operated unit according to the present invention as shown in FIG. 1, which is arranged as a closed current system;



FIG. 1A is a schematic sectional side view of the preferred embodiment of an electromagnetically operated unit according to the present invention as shown in FIG. 1 which is arranged as a closed current system;



FIG. 2 is a schematic sectional view of the pole surfaces and magnetic circuit of the electromagnetically operated unit according to FIG. 1 in the open state;



FIG. 3 is a schematic detailed view of the position of a switching element in the open state of the electromagnetically operated unit according to the present invention as shown in FIG. 1;



FIG. 4 is a schematic detailed view of the position of a switching element in the closed state of the electromagnetically operated unit according to the present invention as shown in FIG. 1;



FIG. 5 is a schematic sectional side view of a further preferred embodiment of an electromagnetically operated unit according to the present invention, which is arranged as a closed current system;



FIG. 5A is a schematic sectional top view of a further preferred embodiment of an electromagnetically operated unit according to the present invention, as shown in FIG. 5, which is arranged as a closed current system;



FIG. 6 is a schematic sectional side view of a third preferred embodiment of an electromagnetically operated unit according to the present invention, which is arranged as a closed current system;



FIG. 6A is a schematic sectional top view of a third preferred embodiment of an electromagnetically operated unit according to the present invention, as shown in FIG. 6, which is arranged as a closed current system;



FIG. 7 is a schematic sectional side view of a fourth preferred embodiment of an electromagnetically operated unit according to the present invention, which is arranged as a closed current system; and



FIG. 7A is a schematic sectional top view of a fourth preferred embodiment of an electromagnetically operated unit according to the present invention, as shown in FIG. 7, which is arranged as a closed current system;





DETAILED DESCRIPTION OF THE DRAWINGS

With reference to FIGS. 1 and 1A, the electromagnetically operated unit 1 comprises a first part of the device 2 (part of the device for brake/clutch or lock purposes), which is designed as a flange and is connected in a rotationally fixed manner with a first part (not illustrated) to be connected, and a second part of the device 3, which is connected in a rotationally fixed manner with a second part to be connected.


The second part of the device 3 comprises a magnet and/or electromagnet 4 in the form of a coil with magnetic poles operating in the radial direction and switching elements 5, which are radially moveable, which are actuated with the magnetic poles of the magnet 4 and respective contours 6 and/or friction surfaces of the part of the device 3 for implementation of a positive engagement and/or frictionally engaged connection between the part of the device 2 to be braked/clutched or fixated and the part of the device 3.


In the described embodiment, the switching elements 5 are biased to communicate with the part of the device to be braked/clutched or fixated (flange 2), via radial pretensioned springs 7, preferably leaf springs, in the non-energized state of the coil 4, such that together with the corresponding contours 6, form a positive engagement connection. The connection is disengaged by energizing the coil 4 and/or the electromagnet to operate contrary to the pretensioning force of the springs 7, which attracts the switching elements 5.


The embodiment described as a closed current system is especially advantageous with regard to fail safe requirements, e.g. upon failure of the power supply, because in this case, the connection between both parts of the device 2, 3 is not released.


The magnetic circuit in the open state of the unit as shown in FIGS. 1 and 1A is exemplified with arrows in FIG. 2. Here, the switching elements 5 are pulled against the force of the springs 7, to disengage the connection.



FIG. 3 shows a schematic detailed view of the position of a switching element 5 in the open state, being designed as a closed current system with the electromagnetically operated unit 1; here, the switching element 5 is moved radially inward against the force of spring 7 by the magnetic force generated by operation of the electromagnet 4; in the non-energized state of the electromagnet a tooth 8 of the switching element 5 meshes with a corresponding contour 6 of the flange, via the force of spring 7, as illustrated in FIG. 4.


The subject matter of FIGS. 5 and 5A is an embodiment of the present invention, in which the electromagnetically operated unit 1 is designed as a positively engaged closed current system, the switching elements 5 are biased inwardly in the direction of a shaft 9, when viewed radially, to initiate a positively engaged connection between the first part of the device 2 and the second part of the device 3. Here, in the non-energized state of the electromagnet 4, each of the switching elements 5 is biased against the shaft 9 by the force of at least one pressure spring 7. To assist the spring force in the engagement of the switching element 5, a servo system may optionally be provided. This system includes a caster 10 and a respective ramp on which the switching element 5 rests. The ramp is located between the electromagnet 4 and the switching element.



FIGS. 6 and 6A illustrate a further embodiment of the present invention, in which the electromagnetically operated unit 1 is arranged as a positively engaged closed current system, the switching elements 5 are biased outwardly, via the force of at least one pressure spring 7, in the direction of a hollow shaft 11 and/or a housing, when viewed radially, to initiate a positively engaged connection between the first part of the device 2 and the second part of the device 3. In the illustrated embodiment a servo system is provided to assist the spring force in the engagement of the switching element 5. The system includes a caster 10 and a respective ramp, on which the switching element 5 rests. The ramp is located between the electromagnet 4 and the switching element.



FIGS. 7 and 7A illustrate a further embodiment of the present invention, in which the electromagnetically operated unit 1 is designed as a positive engagement closed current system, the switching elements 5 are biased outwardly, via the force of at least one pressure spring 7, toward a hollow shaft 11 and/or a housing, when viewed radially, to initiate a positively engaged connection between the first part of the device 2 and the second part of the device 3. In this embodiment, a servo system is likewise provided, and includes a caster 10 for each switching element 5, the component on which the switching element 5 rests being arranged as a ramp.


If the electromagnetically operated unit is designed as an open circuit system, the engaging or coupling function and/or brake function is initiated, via the electromagnet, and the disconnection, via a spring element, for example. Here, the switching elements are advantageously released by the spring force of the part of the device to be braked/fixated or clutched; the connection is initiated by operation of the electromagnet with the switching elements being biased against the part of the device to be braked/clutched or fixated. In this arrangement the switching elements are preferably fixed to the part of the device to be braked/fixated or clutched.


Of course, any constructive embodiment, particularly any spatial arrangement of the components of the electromagnetically operated unit as such, as well as in relation to one another, to the extent they are technically expedient, falls under the scope of protection of the present claims, without influencing the function of the electromagnetically operated unit as described in the claims, even if these embodiments are not explicitly illustrated in the FIGS. or mentioned in the description.












Reference numerals


















1
Electromagnetically operated unit



2
First part of the device, flange



3
Second part of the device



4
Magnet, electromagnet, coil



5
Switching element



6
Contour



7
Spring



8
Tooth



9
Shaft



10
Caster



11
Hollow shaft









Claims
  • 1. An electromagnetically operated unit, in particular a clutch, brake and/or lock, for the implementation of a switchable radial connection of a powered part and an unpowered or static part, characterized in that it discloses a first torque proof connected part of the device (2) to be joined to a part and a second torque proof connected part of the device (3) to be joined to a second part, a magnet and/or electromagnet (4) being disclosed with magnetic poles operating in radial direction that discloses switching elements (5) in radial movable arrangement, which rest on a part of the device in circumferential direction and actuate vertically with the corresponding contours (6) and/or friction surfaces of the other part of the device to implement a positive locking and/or friction locked connection between the first part of the device (2) and second part of the device (3), each switching element (5) being attracted when current is applied to the magnet in a layout as a closed current system to release, and in a layout as an open circuit system to implement the connection against the force of at least one spring (7).
  • 2. The electromagnetically operated unit according to claim 1, wherein the switching element (5) are joined floating or clearance free to the first or second part of the device (2, 3).
  • 3. The electromagnetically operated unit according to claims 1 or 2, wherein the poles of the magnet and/or electromagnet (4) and the switching elements (5) actuating conjointly with the poles are arranged such that, viewed radially, the switching elements (5) actuate inward or outward to implement the positive locking or friction locked connection respectively.
  • 4. The electromagnetically operated unit according to claims 1, 2 or 3, wherein the switching elements (5) are designed as a circular arc or as straight segments.
  • 5. The electromagnetically operated unit according to claims 1, 2, 3 or 4, wherein to reduce the necessary operating power or to increase the transmissible torque via the electromagnetically operated unit (1) a servo system is provided disclosing a ball or roll (10) and a corresponding ramp of the component on which the switching element rests between the magnet and/or electromagnet (4) and the switching element, so that the force of the actuating spring (7) is reinforced in a layout of the unit (1) as a closed current system and/or of the electromagnet (4) in a layout of the unit (1) as an open circuit system.
  • 6. The electromagnetically operated unit according to claims 1 to 5, wherein in a layout of the unit as a closed current system, in which, to implement a positive locking connection, each of the switching elements (5) in the non-energized state of the electromagnet (4) is pressed by the force of at least one pressure spring (7) against the part of the device (2), the switching elements (5) are joined to the part of the device (3) that discloses the electromagnet (4).
  • 7. The electromagnetically operated unit according to any one of claims 1 to 5, wherein in a layout of the unit as a closed current system, in which, to implement a positive locking or friction locked connection, each of the switching elements (5) in the non-energized state of the electromagnet (4) is pressed by the force of at least one pressure spring (7) against the part of the device (2), the switching elements (5) are joined to the part of the device (2).
Priority Claims (1)
Number Date Country Kind
102006024276.9 May 2006 DE national