The present disclosure relates generally to electronic equipment or devices. In particular, the present disclosure relates to electromagnetic protection of electronic equipment, such as power utility electronic equipment, supervisory control & data acquisition (SCADA) systems, communications systems, data processing systems or other semiconductor-based electronic systems.
Electronic equipment, including equipment based on semiconductor technology, is susceptible to damage or binary state upsets from High Altitude Electromagnetic Pulse (HEMP or EMP), Intentional Electromagnetic Interference (IEMI) and RF interference. For example, stored data in modern electronic data systems, control systems and recording systems can be upset, scrambled or lost by EMP, IEMI or RF energy. At higher energy levels of EMP, IEMI or RF power the semiconductor devices within electronics units can be destroyed.
Damage based on exposure to electromagnetic fields is not limited to semiconductor-based electronic systems. For example, EMP and IEMI events can cause interference or upset and or damage to electrical equipment, causing that equipment to malfunction or rendering it nonoperational. Electrical equipment can also be destroyed by strong electromagnetic pulse (EMP), intentional electromagnetic interference (IEMI) or high power RF radiation. The detailed characteristics of EMP radiation are described in Military Standard 188-125, entitled “High Altitude Electromagnetic Pulse Protection for Ground Based C4I Facilities Performing Critical, Time-Urgent Missions”. The detailed characteristics of IEMI are described in IEC Standard 61000-2-13, “High-power electromagnetic (HPEM) environments-Radiated and conducted.”
In general, EMP/IEMI/RF events typically take one of two forms. First, high-field events correspond to short-duration, high electromagnetic field events (e.g., up to and exceeding 100 kilovolts per meter), and typically are of the form of short pulses of narrow-band or distributed signals (e.g., in the frequency range of typically 14 kHz to 10 GHz). These types of events typically generate high voltage differences in equipment, leading to high induced currents and burnout of electrical components. Second, low-field events (e.g., events in the range of 0.01 to 10 volts per meter) are indications of changing electromagnetic environments below the high field damaging environments, but still of interest in certain applications. Low field events can also cause upsets in the binary states of digital electronic equipment yielding non-functioning electrical or computing equipment.
Existing electromagnetic protection schemes are typically used to protect against a narrow range of threats. The protection schemes built into electronic systems or cabinets are generally developed to address a certain possible issue, and are not useful to address other electromagnetic interference issues. Although attempts have been made to “harden” or protect, certain military systems against these threats, many commercial electronic systems or cabinets remain unprotected. However, these existing “hardening” solutions are cost-prohibitive to apply to a wide range of electronics, exposing critical assets to possible damage. Additionally, existing solutions provide some amount of shielding, but are not designed to accommodate all of the cooling and access considerations required of many modern electronic system or cabinets. Additionally, earlier shielding attempts could at times limit the functionality of electronics included in such systems, since at times power or other signals would be entirely disrupted to avoid damage or upsets to internal electronics. Still further, many attempts to create shielding enclosures fail because of the strict manufacturing tolerances required to ensure that the enclosures can maintain a seal from outside sources of EMP/IEMI/RF signals. Because the vast majority of electronics remain unprotected from EMP/IEMI/RF events, a widespread outage or failure due to electromagnetic interference could have disastrous effects.
For these and other reasons, improvements are desirable.
In accordance with the following disclosure, the above and other issues are addressed by the following:
In a first aspect, a shielding arrangement for electronic equipment is disclosed. The shielding arrangement includes a shielding enclosure having an interior volume, the interior volume defining a protected portion, the shielding enclosure further having one open side. The shielding arrangement further includes an enclosure frame welded to the open side of the shielding enclosure, and a door assembly having an opened and closed position, the door assembly providing access to at least the protected portion of the shielding enclosure and being secured to the enclosure. The door assembly includes a metal frame, a metal outer wall, a shielding curtain moveably attached to the metal frame, and an inflatable member positioned along a perimeter of the metal frame and between the metal frame and the shielding curtain. The inflatable member is selected and positioned to, when inflated, apply a uniform pressure to the shielding curtain toward the enclosure frame to form a seal when the door assembly is in the closed position.
In a second aspect, a method of shielding electronic equipment within an enclosure includes positioning electronic equipment within an interior volume of a shielding enclosure having an opening providing access to the interior volume, the opening surrounded by an enclosure frame. The method further includes closing a door to the shielding enclosure, thereby closing off the opening, and engaging one or more latches to affix the door in a closed position, the door including a shielding curtain positioned across the opening. The method also includes inflating an inflatable member positioned along a perimeter of the door frame, the thereby applying a uniform pressure to the shielding curtain toward the enclosure frame to form a seal therebetween.
In a third aspect, a door assembly for shielding electronic equipment includes a metal frame, a metal outer wall, a shielding curtain moveably attached to the metal frame, and a hollow, inflatable member positioned along a perimeter of the metal frame and between the metal frame and the shielding curtain.
In a fourth aspect, a latch for a door assembly includes a first mounting plate having a first plurality of hollow cylinders, positioned along an edge of the first mounting plate, wherein the first plurality of hollow cylinders each includes a gap in at least a portion of the hollow cylinders. The latch further includes a second mounting plate having a second plurality of hollow cylinders positioned along an edge of the second mounting plate, the second plurality of hollow cylinders offset from the first plurality of hollow cylinders such that, when the first and second mounting plate are aligned, the first and second plurality of hollow cylinders form a column of alternating hollow cylinders from the first and second pluralities of hollow cylinders. The latch further includes a latch hinge including a plurality of pins extending from a locking flange and movable between engaged and disengaged positions by sliding the latch hinge in a direction parallel with an axis through the column of alternating hollow cylinders. In the engaged position, the plurality of pins of the latch hinge are at least partially positioned within hollow cylinders of the first and second pluralities of hollow cylinders and a portion of the latch hinge connecting the plurality of pins to the locking flange extends through the gap in each of the first hollow cylinders. In the disengaged position, the plurality of pins of the latch hinge are positioned within the first plurality of hollow cylinders.
Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
In general the present disclosure describes, generally, shielded enclosures, such as electronic cabinets, that are capable of providing shielding from various types of electromagnetic events capable of upsetting and or damaging electronic equipment. In some of the various embodiments described herein, the shielded enclosures can be, for example, constructed of steel or aluminum that is sealed with welded seams and an inflatable member for sealing a metal cover, front panel or other closure surface. The shielded enclosures provide attenuation of radiated electromagnetic energy, such that harmful signals essentially cannot penetrate the enclosure. The shielded enclosures disclosed herein can also, in some embodiments, include electrical filters that provide a path for signals to enter and exit the enclosure, but greatly attenuate the unwanted electromagnetic conducted energy, which typically occurs at higher frequencies. Additionally, in some embodiments the shielded enclosures includes honeycomb waveguide air vents that also provide attenuation of radiated electromagnetic waves/energy, which also reduce unwanted EMP, IEMI and RF energy entering the enclosure, and reduce the risk of damage or upsets to electronic equipment within such electronic cabinets in a cost-effective and compact structure, while concurrently meeting management access and airflow management requirements of electronics systems.
In some embodiments, the present disclosure relates to a low cost and practical method to protect electronic equipment, including SCADA systems, Electrical utility breaker equipment, and communications systems from EMP, IEMI and RF weapons. Using the systems and methods of the present disclosure, SCADA, electrical utility breaker and communications electronics can be better protected from being destroyed or disabled by EMP, IEMI or RF weapons than unprotected equipment. According to various embodiments, the electronics are placed in an EMP/IEMI/RF shielded enclosure, and electrical or other communicative interfaces are sealed and filtered to prevent entry into that enclosure of unwanted signals to interfere with the electronic equipment. Signal filters (housed within one or more containers) are configured to filter out and remove all high frequency, for example greater than typically 14 kHz for EMP and greater than 1 MHz for IEMI, electromagnetic energy. In a first example embodiment shown in
Generally, the shielded enclosure 4 can contain electronics that include digital or analog electronics; however, other types of electronics systems, including mixed digital/analog electronics could be used as well. In some example embodiments, the electronics can include digital or analog electronics, fiber to electrical signal converters, and power supplies. The electronics are shielded from the potentially harmful electromagnetic signals, and therefore are placed within the protected region 6. In the context of the present disclosure, the electromagnetic signals that are intended to be shielded are high energy signals, typically having magnitudes and frequencies in typical communication ranges experienced by electronic systems. For example, the short duration, high energy signals provided by EMP/IEMI/RF events are shielded. In some embodiments it is recognized that electronics maintained within the protected region 6 will generally require power and/or communicative connections. Accordingly, in some embodiments, a plurality of filters are positioned at least partially within the protected region 6, and configured to filter out signals outside of an expected frequency or magnitude range. Also in some embodiments, filters can provide filtration of electrical or communicative signals, and filters can provide filtration and “cleaning” of a power signal. In various embodiments, the filters could be, for example, band-pass, low-pass, or common mode filters, or even a surge arrester. Other types of filters could be included as well. In certain embodiments, the signal output by the power filter is passed to a power supply, which regulates the received, filtered power signal (e.g., a DC or AC signal) and provides a power signal (e.g., a direct current signal at a predetermined voltage desired by the electronics).
In certain embodiments, the enclosure 4 can also contain fiber-optic equipment; accordingly, a waveguide beyond cutoff can be included, and a fiber-optic cable can be extended from external to the enclosure, through an unprotected region, and into the protected region 6 (e.g., to a fiber converter). The waveguide beyond cutoff can be configured to allow optical signals of a predetermined frequency to pass from the unprotected portion to the protected portion, while filtering undesirable signals of different frequency or magnitude.
Furthermore, it is recognized that in many circumstances, the electronics included within an enclosure 4 may require airflow, for example for cooling purposes. In certain embodiments, the enclosure 4 includes a plurality of vents (not shown) through the enclosure 4 which allow airflow from external to the enclosure to pass into the protected region 6. In certain embodiments, the vents can be positioned in alignment to allow a flow-through, aligned configuration. In alternative embodiments, different positions of vents could be used. Each of the vents can include a waveguide beyond cutoff having one or more honeycomb-shaped or otherwise stacked shapes and arranged apertures configured to shield the interior volume of the enclosure 2, including the protected region 6, from exposure to electromagnetic signals exceeding a predetermined acceptable magnitude and frequency. For example, signals up to 10 GHz and up to exceeding about 14 kHz, or about 100 kilovolts per meter, can be filtered by correctly selected sizes of waveguide apertures. Example vents, as well as additional features relating to electromagnetically-shielding enclosures and methods for sealing such enclosures, are provided in co-pending U.S. patent application Ser. No. 13/285,581, filed on Oct. 31, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
In the preferred embodiment, the shielded enclosure 4 has an enclosure frame 8 welded around the perimeter of the shielded enclosure 4. The enclosure frame 8 is secured to shielded enclosure 4 with a high quality weld such that cracks and pin holes are avoided so that IEMI and EMP energy is prevented from entering the enclosure 4. In certain embodiments, the enclosure frame 8 can be made from steel, having a nickel or nickel-based coating. The enclosure frame 8 can also be constructed to have a planar and smooth front surface, for example by applying a surface grind operation thereto. The enclosure frame 8 having a shielded door assembly 10 secured to a side of the enclosure frame 8 by a plurality of latch hinges 12. The shielded door 10 provides a high attenuation of electro-magnetic energy, IEMI and EMP, when the door is in its closed position energy will not enter the protected region 6.
In certain embodiments the door assembly 10 is comprised of a tubular door frame 14 having a shielding curtain 16 attached to the interior side of the door frame 14, closest to the protectable region 6. In some embodiments, the interior side of the door frame 14 can also be constructed to have a planar and smooth surface finish, for example by applying a surface grind operation thereto. In certain embodiments, the shielding curtain 16 can be made of steel and be nickel coated. Also, in some embodiments, the shielding curtain may also be constructed to have a planar and smooth surface finish, for example by applying a surface grind operation thereto. When the door is closed, the curtain 16 mates with the nickel coated enclosure frame 8, such that the mating surfaces will provide a high attenuation seal to prevent IEMI and EMP energy from entering the protected region 6. Details regarding this mating arrangement are provided in further detail below.
In a second possible embodiment, such as is shown in
The shielded enclosure 100 has an interior volume formed from a protected region 102 and an unprotected region 104. The unprotected enclosure 104 can be sealed with an electrically conductive or RF gasket around the perimeter of the unprotected enclosure 104. The unprotected portion 104 can house the various signal or Ethernet signal filters for signal inputs and outputs from the enclosure, as necessary based on the type of electronics included in the overall arrangement 100. In certain embodiments, the enclosure 100 can also contain fiber-optic equipment; accordingly, a waveguide beyond cutoff can be included, and a fiber-optic cable can be extended from external to the enclosure, through the unprotected region 104, and into the protected region 102 (e.g., to a fiber converter). Additionally, vents, such as those discussed above, could be included as well.
In the embodiment shown, the shielded enclosure 100 has an enclosure frame 106 welded around the perimeter of the shielded enclosure 100. The enclosure frame 106 being secured to shielded enclosure 100 with a high quality weld such that cracks and pin holes are avoided so that RF, IEMI and EMP energy is prevented from entering the enclosure 100. As noted above, enclosure frame 106 can also be constructed to have a planar and smooth front surface, for example by applying a surface grind operation thereto. In certain embodiments, the enclosure frame 106 can be made from steel and have a nickel coating.
The enclosure frame 106 has a shielded door assembly 108 secured to a side of the enclosure frame by a plurality of latch hinges 12. The shielded door assembly 108 provides a high attenuation of electro-magnetic energy, RF, IEMI and EMP, such that when the door is in its closed position energy will not enter the protected region 102. In certain embodiments the door assembly 108 is comprised of a tubular frame 112 having a shielding curtain 114 attached to the interior side closest to the protectable region 102. In certain embodiments, the shielding curtain 114 can be made of steel and be Nickel coated such that when it mates with the nickel coated enclosure frame 106 the mating surfaces will provide a high attenuation seal to prevent IEMI and EMP energy from entering the protected region 102.
In some embodiments, an electrically conductive or RF gasket material 116 can be used around the perimeter of the enclosure frame 106 to provide a gasket seal between the enclosure frame 106 and the shielding curtain 114. This gasket material 116 around the perimeter of the enclosure frame 106 could be several millimeters in thickness and have a width of one to three inches. The gasket material 116 could be glued or otherwise affixed in place, onto the enclosure frame 106. An additional metal frame (not shown) could be placed around either the outer or inner perimeter of the gasket material 116 to provide a physical stop such that the gasket material 116 would be accurately compressed to within a specified tolerance to achieve high electromagnetic (RF/IEMI/EMP) attenuation when the door of the enclosure is in a closed position.
In some embodiments and as best shown in
To achieve the locked position, both the latch 26 and the mated mounting plate are adapted to have a locking flanges 30, 31 to accept an external lock (e.g. lock 50) so that the bolt on the external lock passes through both locking flanges 30, 31. In the locked position, the mounting plates 18, 20 are pivotably connected such that the mounting plates and latch 26 operate as a hinge. To open the door assembly 10, a user will disengage at least one such latch hinge 12 on one side of the frame, allowing a latch hinge on an opposite side to act as a hinge and pivot the door open (or, alternatively, to disengage all latch hinges 12, thereby removing the shielded door assembly 108 from the enclosure frame 106 altogether to access the protected region 102. To accomplish disengagement of a latch hinge 12, the latch 26 is lifted and rotated away from the enclosure 4, as shown in
Now referring to
As shown in
In
In use, when the door assembly 10 and latch hinges 12 are in their respective closed positions, a user can activate the compressor or pressurized gas bottle to inflate the inflatable member 38. When inflated, the inflatable member 38 expands and forces the shielding metal curtain 16 over a distance A against the enclosure frame 8. Once the inflatable member 38 is inflated to the desired pressure the shielding metal curtain 16 is tightly pressed against the enclosure frame 8 with a uniform pressure around the door perimeter therefore sealing against the shielded enclosure 4.
As noted above, the enclosure frame 8 can be ground to form a smooth and planar outer surface for mating with the shielding curtain 16, such as by applying a surface grind operation. In addition, in some embodiments, the interior of the door frame 14 and the shielding curtain 16 may also be ground to have a smooth and planar surface to ensure effective mating between the door frame 14, the shielding curtain 16, and the enclosure frame 8. Surface finishes for the enclosure frame 8, the interior of the door frame 14, and the shielding curtain 16 can range from less than about 1 RMS to about 250 RMS. In some embodiments, less than about 1 RMS surface finish may be accomplished with electro-less nickel plating, electro polishing or other method. In such cases, the enclosure frame can be attached to the enclosure generally either prior to or after such a grinding process is performed. However, and with respect to mating of the shielding curtain 16 and enclosure frame 8 when the door assembly 10 is in a closed position, in example embodiments, the shielding curtain 16 can be at least partially flexible, such that, when the inflatable member 38 expands, the shielding curtain 16 can be at least partially deformed to seal against the enclosure frame 8.
Shown in
Referring to
In addition, and still referring to
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
The present application claims priority from U.S. Provisional Application No. 61/784,891, filed on Mar. 14, 2013, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2727225 | Dunn | Jul 1956 | A |
2757225 | Dunn | Jul 1956 | A |
3009984 | Lindgren | Nov 1961 | A |
3075818 | Fay | Jan 1963 | A |
3158016 | Fay | Nov 1964 | A |
3189394 | Fay | Jun 1965 | A |
3231663 | Schwartz | Jan 1966 | A |
3297383 | Fay | Jan 1967 | A |
3364489 | Masters | Jan 1968 | A |
3390491 | Howard et al. | Jul 1968 | A |
3492568 | Johnson | Jan 1970 | A |
3518355 | Luce | Jun 1970 | A |
3729740 | Nakahara et al. | Apr 1973 | A |
3962550 | Kaiserswerth | Jun 1976 | A |
D245303 | Gazarek | Aug 1977 | S |
4060709 | Hanson | Nov 1977 | A |
4066305 | Gazarek | Jan 1978 | A |
D248003 | Gazarek | May 1978 | S |
4102554 | Reimer | Jul 1978 | A |
4115656 | Aitel | Sep 1978 | A |
4177353 | McCormack | Dec 1979 | A |
4370831 | Hamilton | Feb 1983 | A |
4371175 | Van Dyk, Jr. | Feb 1983 | A |
4399317 | Van Dyk, Jr. | Aug 1983 | A |
4525595 | Harriman | Jun 1985 | A |
4532513 | Halvorson | Jul 1985 | A |
4655012 | Downey et al. | Apr 1987 | A |
4660014 | Wenaas et al. | Apr 1987 | A |
4677251 | Merewether | Jun 1987 | A |
4691483 | Anderson | Sep 1987 | A |
4746765 | Mallott | May 1988 | A |
4748790 | Frangolacci | Jun 1988 | A |
4750957 | Gustafson | Jun 1988 | A |
4755630 | Smith et al. | Jul 1988 | A |
H526 | Miller | Sep 1988 | H |
4787181 | Witten et al. | Nov 1988 | A |
D300097 | Cook | Mar 1989 | S |
4884171 | Maserang et al. | Nov 1989 | A |
4894489 | Takahashi et al. | Jan 1990 | A |
4913476 | Cook | Apr 1990 | A |
H000821 | Hatfield et al. | Sep 1990 | H |
4962358 | Svetanoff | Oct 1990 | A |
5045636 | Johnasen et al. | Sep 1991 | A |
5079388 | Balsells | Jan 1992 | A |
5117066 | Balsells | May 1992 | A |
5136119 | Leyland | Aug 1992 | A |
5136453 | Oliver | Aug 1992 | A |
5148111 | Shiloh et al. | Sep 1992 | A |
5179489 | Oliver | Jan 1993 | A |
5184311 | Kraus et al. | Feb 1993 | A |
5190479 | Jordi | Mar 1993 | A |
5191544 | Benck et al. | Mar 1993 | A |
5225631 | Lee | Jul 1993 | A |
5241132 | McCormack | Aug 1993 | A |
5335464 | Vanesky | Aug 1994 | A |
5414366 | Rogers | May 1995 | A |
5436786 | Pelly et al. | Jul 1995 | A |
5465534 | Mittag | Nov 1995 | A |
5546096 | Wada | Aug 1996 | A |
5594200 | Ramsey | Jan 1997 | A |
5600290 | Anderson, II | Feb 1997 | A |
5685358 | Kawasaki et al. | Nov 1997 | A |
5749178 | Garmong | May 1998 | A |
5751530 | Pelly et al. | May 1998 | A |
5828220 | Carney et al. | Oct 1998 | A |
5929821 | Goldstein et al. | Jul 1999 | A |
5939982 | Gagnon et al. | Aug 1999 | A |
5983578 | Huttie et al. | Nov 1999 | A |
6011504 | Tan | Jan 2000 | A |
6068009 | Paes et al. | May 2000 | A |
6090728 | Yenni, Jr. et al. | Jul 2000 | A |
6157546 | Petty et al. | Dec 2000 | A |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6210787 | Goto et al. | Apr 2001 | B1 |
6292373 | Li et al. | Sep 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6324075 | Unrein et al. | Nov 2001 | B1 |
6346330 | Huang et al. | Feb 2002 | B1 |
6377473 | Huang et al. | Apr 2002 | B1 |
6380482 | Norte et al. | Apr 2002 | B1 |
6426459 | Mitchell | Jul 2002 | B1 |
6442046 | Sauer | Aug 2002 | B1 |
6480163 | Knop et al. | Nov 2002 | B1 |
6485595 | Yenni, Jr. et al. | Nov 2002 | B1 |
6542380 | Hailey et al. | Apr 2003 | B1 |
6542384 | Radu et al. | Apr 2003 | B1 |
6613979 | Miller et al. | Sep 2003 | B1 |
6683245 | Ogawa et al. | Jan 2004 | B1 |
6838613 | Kopf | Jan 2005 | B2 |
6870092 | Lambert et al. | Mar 2005 | B2 |
6872971 | Hutchinson et al. | Mar 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6891478 | Gardner | May 2005 | B2 |
7071631 | Howard, II | Jul 2006 | B2 |
7210557 | Phillips et al. | May 2007 | B2 |
7258574 | Barringer et al. | Aug 2007 | B2 |
7369416 | Plabst | May 2008 | B2 |
7400510 | Milligan et al. | Jul 2008 | B1 |
7418802 | Sarine et al. | Sep 2008 | B2 |
7420742 | Wood et al. | Sep 2008 | B2 |
7475624 | Daily | Jan 2009 | B1 |
7498524 | Brench | Mar 2009 | B2 |
7504590 | Ball | Mar 2009 | B2 |
7512430 | Nakamura | Mar 2009 | B2 |
7515219 | Bozzer et al. | Apr 2009 | B2 |
7560135 | Kotsubo et al. | Jul 2009 | B2 |
7561444 | He | Jul 2009 | B2 |
7576289 | Kessel | Aug 2009 | B2 |
7589943 | Ramirez et al. | Sep 2009 | B2 |
7710708 | Park et al. | May 2010 | B2 |
7839020 | Nakanishi | Nov 2010 | B2 |
7839136 | John | Nov 2010 | B1 |
8085554 | Holdredge et al. | Dec 2011 | B2 |
8183995 | Wang et al. | May 2012 | B2 |
8197473 | Rossetto et al. | Jun 2012 | B2 |
8351221 | Siomkos et al. | Jan 2013 | B2 |
8358512 | Shiroishi et al. | Jan 2013 | B2 |
8358515 | Chen et al. | Jan 2013 | B2 |
8373998 | Ricci et al. | Feb 2013 | B2 |
8406012 | Kim | Mar 2013 | B2 |
8493504 | Kobayashi et al. | Jul 2013 | B2 |
8547710 | Ruehl et al. | Oct 2013 | B2 |
8599576 | Faxvog et al. | Dec 2013 | B2 |
8642900 | Nordling et al. | Feb 2014 | B2 |
8643772 | Anderson | Feb 2014 | B2 |
8754980 | Anderson et al. | Jun 2014 | B2 |
8760859 | Fuchs et al. | Jun 2014 | B2 |
9029714 | Winch | May 2015 | B2 |
20010046128 | Ogata | Nov 2001 | A1 |
20020060639 | Harman | May 2002 | A1 |
20030024172 | Lyons et al. | Feb 2003 | A1 |
20030029101 | Lyons | Feb 2003 | A1 |
20030042990 | Schumacher | Mar 2003 | A1 |
20030174487 | Garmong | Sep 2003 | A1 |
20040112205 | MacDougall | Jun 2004 | A1 |
20040232847 | Howard, II | Nov 2004 | A1 |
20050174749 | Liikamaa et al. | Aug 2005 | A1 |
20050247471 | Archambeault et al. | Nov 2005 | A1 |
20060170430 | Tarvainen et al. | Aug 2006 | A1 |
20060272857 | Arnold | Dec 2006 | A1 |
20060274517 | Coffy | Dec 2006 | A1 |
20070002547 | Garmong | Jan 2007 | A1 |
20070007037 | Diaferia | Jan 2007 | A1 |
20070025095 | Beall et al. | Feb 2007 | A1 |
20070084126 | Hautmann | Apr 2007 | A1 |
20070093135 | Luo et al. | Apr 2007 | A1 |
20070095568 | Hautmann | May 2007 | A1 |
20070105445 | Manto et al. | May 2007 | A1 |
20070126871 | Henninger, III et al. | Jun 2007 | A1 |
20070127129 | Wood et al. | Jun 2007 | A1 |
20070158914 | Tammaro et al. | Jul 2007 | A1 |
20070296814 | Cooper et al. | Dec 2007 | A1 |
20080050172 | Simola et al. | Feb 2008 | A1 |
20080080158 | Crocker et al. | Apr 2008 | A1 |
20080250726 | Slagel et al. | Oct 2008 | A1 |
20090067141 | Dabov et al. | Mar 2009 | A1 |
20090125316 | Moore | May 2009 | A1 |
20090140499 | Kline | Jun 2009 | A1 |
20090229194 | Armillas | Sep 2009 | A1 |
20090244876 | Li et al. | Oct 2009 | A1 |
20090268420 | Long | Oct 2009 | A1 |
20090278729 | Bosser et al. | Nov 2009 | A1 |
20090291608 | Choi et al. | Nov 2009 | A1 |
20090295587 | Gorman, Jr. | Dec 2009 | A1 |
20100001916 | Yamaguchi et al. | Jan 2010 | A1 |
20100096180 | Carducci et al. | Apr 2010 | A1 |
20100103628 | Steffler | Apr 2010 | A1 |
20100116542 | Sugihara et al. | May 2010 | A1 |
20100128455 | Ophoven et al. | May 2010 | A1 |
20100208433 | Heimann et al. | Aug 2010 | A1 |
20100315199 | Slagel et al. | Dec 2010 | A1 |
20100315792 | Jones | Dec 2010 | A1 |
20110058035 | DeBerry et al. | Mar 2011 | A1 |
20110088940 | Nordling et al. | Apr 2011 | A1 |
20110092181 | Jackson et al. | Apr 2011 | A1 |
20110169634 | Raj et al. | Jul 2011 | A1 |
20110222249 | Ruehl et al. | Sep 2011 | A1 |
20110267765 | Fuchs et al. | Nov 2011 | A1 |
20120113317 | Anderson | May 2012 | A1 |
20120140107 | Anderson et al. | Jun 2012 | A1 |
20120140431 | Faxvog et al. | Jun 2012 | A1 |
20120243846 | Jackson et al. | Sep 2012 | A1 |
20120326729 | Faxvog et al. | Dec 2012 | A1 |
20130152485 | Austin et al. | Jun 2013 | A1 |
20130170159 | Jiang | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1277870 | Dec 1990 | CA |
0 668 692 | Aug 1995 | EP |
1 114 423 | Feb 2007 | EP |
1860725 | Nov 2007 | EP |
2 221 921 | Aug 2010 | EP |
294513 | Jul 1928 | GB |
11-239288 | Aug 1999 | JP |
2003-133849 | May 2003 | JP |
Entry |
---|
Military Handbook 235-1B, Electromagnetic (Radiated) Environment Considerations for Design and Procurement of Electrical and Electronic Equipment, Subsystems and Systems, Part 1B, General Guidance, 20 Pages, 1993. |
Military Handbook 237B, Department of Defense Handbook, Guidance for Controlling Electromagnetic Environmental Effects on Platforms, Systems, and Equipment, 248 Pages, 1997. |
Military Handbook 253, Guidance for the Design and Test of Systems Protected Against the Effects of Electromagnetic Energy, 27 Pages, 1978. |
Military Handbook 273, Survivability Enhancement, Aircraft, Nuclear Weapon Threat, Design and Evaluation Guidelines, 228 Pages, 1983. |
Military Handbook 411B, Power and the Environment for Sensitive DoD Electronic Equipment (General), vol. 1, 658 pages, 1990. |
Military Handbook 419A, Grounding, Bonding, and Shielding for Electronic Equipments and Facilities, vol. 1 of 2 Volumes, Basic Theory, 812 Pages, 1987. |
Military Handbook 1857, Grounding, Bonding and Shielding Design Practices, 185 Pages, 1998. |
Military Handbook 5961A, List of Standard Semiconductor Devices, 33 pages, 1999. |
Military Standard 188-124B, Grounding, Bonding and Shielding, for Common Long Haul/Tactical Communication Systems Including Ground Based Communications-Electronics Facilities and Equipments, 41 Pages, 1992. |
Military Standard 188-125-1, Department of Defense Interface Standard, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (Part 1—Fixed Facilities), 107 Pages, 1998. |
Military Standard 188-125-2, Department of Defense Interface Standard, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (Part 2—Transportable Systems), 148 Pages, 1999. |
Military Standard 188-125, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (vol. 1—Fixed Facilities), 114 Pages, Feb. 1994. |
Military Standard 220C, Department of Defense—Test Method Standard—Method of Insertion Loss Measurement, 19 Pages, 2009. |
Military Standard 285—Notice of Cancellation—MIL-STD-285, dated 1956 canceled, 17 Pages, 1997. |
Military Standard 285, Military Standard Attenuation Measurements for Enclosures, Electromagnetic Shielding, for Electronic Test Purposes, 15 Pages, 1956. |
Military Standard 461C, Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference, 183 Pages, 1986. |
Military Standard 461E, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 253 Pages, 1999. |
Military Standard 461F, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 269 Pages, 2007. |
Military Standard 462, Electromagnetic Interference Characteristics, 80 Pages, 1967. |
Military Standard 462D, Measurement of Electromagnetic Interference Characteristics, 203 Pages, 1993. |
Military Standard 464, Electromagnetic Environmental Effects Requirements for Systems, 116 pages, 1997. |
Military Standard 464A, Electromagnetic Environmental Effects Requirements for Systems, 121 pages, 2002. |
Military Standard 469B, Radar Engineering Interface Requirements, Electromagnetic Compatibility, 98 Pages, 1996. |
Military Standard 1542B (USAF), Electromagnetic Compatibility and Grounding Requirements for Space System Facilities, 52 Pages, 1991. |
Military Handbook 1195, Radio Frequency Shielded Enclosures, 86 Pages, Sep. 1988. |
IEEE Std 299-1997, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, 44 Pages, 1997. |
Leland H. Hemming, Architectural Electromagnetic Shielding Handbook—A Design Specification Guide, IEEE Press, 232 Pages, 1991. |
USAF Handbook for the Design and Construction of HEMP/TEMPEST Shielded Facilities, AF Regional Civil Engineer Central Region, Dallas, Texas, 39 Pages, 1986. |
ETS-LINDGREN—High Performance EMI/RFI Shielding Solutions, 2 Pages, 2002. |
ETS-LINDGREN—Double Electrically Isolated RF Enclosures, For Industrial, Communication, and Research and Development Applications, 8 Pages, 2005. |
ETS-LINDGREN—Tempest Information Processing System (TIPS), 2 Pages, 2008. |
ETS-LINDGREN—Table Top Enclosure—5240 Series, 2 Pages, 2009. |
ETS-LINDGREN—Auto Latching Door System, 2 Pages, (undated). |
ETS-LINDGREN—RF Shielded Doors, 5 Pages, (undated). |
NSA-94-106, National Security Agency Specification for Shielded Enclosures, 9 Pages, 1994. |
Holland Shielding Systems BV, Shielding Gaskets With or Without Water Seal (EMI-RFI-IP Gaskets), 2 Pages, (undated). |
Holland Shielding Systems BV, EMI-RFI-EMP—Shielded Doors for Faraday Cages and EMI-RFI Shielded Room, 5 Pages, (undated). |
Holland Shielding Systems BV, Innovative EMI Shielding Solutions—Gasket Selection, 36 Pages, (undated). |
Equipto Electronic Corporation—Technical Guide to EMI/RFI Suppression in Electronic Cabinets, 16 Pages, Apr. 2005. |
Crenlo-Emcor-Product-Options-Doors, 12 Pages, (undated). |
RFI/EMI Shielded Cabinets and Features Available, 4 Pages, (undated). |
Special Door Company, Radiation Shielding Doors: SH Door Tech, 2 Pages, (undated). |
Special Door Company, EMP Doors: Electro Magnetic Pulse Doors, 3 Pages, (undated). |
Braden Shielding Systems, Anechoic Chambers, EMC Chambers, MRI Enclosures, 1 Page, (undated). |
Magnetic Shield Corp.—Bensenville, Illinois, Magnetic Shielding, 2 Pages, (undated). |
EEP—Electromagnetic Radiation Shielding & Magnetic Field Shielding Technology—Products and Services, 3 Pages, (undated). |
Fleming—RF & EMI Shielded Doors, Radiation Shielded Doors, 3 Pages, (undated). |
H. Bloks, “NEMP/EMI Shielding,” EMC Technology, vol. 5, No. 6, Nov.-Dec. 1986, 5 Pages. |
W.E. Curran, “New Techniques in Shielding,” ITEM, 1984, 9 Pages. |
W. E. Curran, “Shielding for HEMP/TEMPEST Requirements,” ITEM, 1988, 10 Pages. |
IEEE Transaction on Advanced Packaging, “Electromagnetic Interference (EMI) of System-on-Package (SOP),” vol. 27, No. 2, pp. 304-314, May 2004. |
International Search Report and Written Opinion for Application No. PCT/US2014/026760 mailed Feb. 2, 2015. |
Partial International Search Report for Application No. PCT/US2014/026760 mailed Dec. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20160302332 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61784891 | Mar 2013 | US |