The present invention generally relates to an electric induction heating apparatus wherein a gas-tight enclosure isolates a workpiece from the surrounding environment while an induction heating means located outside of the enclosure inductively heats the workpiece within the enclosure.
A prior art induction heating apparatus comprises an induction means and a non-metallic gas-tight enclosure disposed around a continuous moving product, such as a metal strip or wire. The gas-tight enclosure is thermally and electrically insulated and surrounds the moving product with a non-conductive enclosure. The induction means is located around the outside of the enclosure and is connected to a suitable ac power source so that a magnetic field is established around the induction means when ac current flows through the induction means. The field couples with the moving product and inductively heats the product. The non-conductive gas-tight enclosure must extend a sufficient distance (at least 200 mm) upstream and downstream of the induction means, parallel to the direction of the moving product, to create a region that encloses the magnetic field upstream and downstream of the enclosure. At least in installations where fitting of the gas-tight enclosure in the induction heating line is tight, this requirement creates an extended distance that is a problem, particularly when the enclosure is attached to an upstream or downstream processing chamber that is constructed of an electrically conductive material. Moreover high power induction means generate high intensity electromagnetic fields that typically require much longer distances upstream and downstream to avoid induced heating of connected chambers or fittings used to connect the chambers together. Further when the gas-tight enclosure is used as an intermediate chamber between upstream and downstream processing chambers, in some applications thermal heating of the upstream or downstream chamber can exert compression forces on the intermediate chamber.
Therefore there is the need for an induction heating apparatus wherein the length of the gas-tight enclosure that is parallel to the direction of the moving product is substantially limited to the length of the induction means and/or the gas-tight enclosure can compensate for compression forces exerted by thermal expansion of adjacent chambers.
In one aspect the present invention is an induction heating apparatus and method for inductively heating a strip or other workpiece moving through a substantially gas-tight enclosure. Induction means are located around the outside of the enclosure to carry an ac current for generating a magnetic field that penetrates the enclosure and inductively heats the workpiece passing through the enclosure. The enclosure comprises a non-electrically conductive material to permit coupling of the magnetic field with the workpiece passing through the enclosure and an electromagnetic shield material for restricting the regions of the magnetic field. The induction heating apparatus is of particular advantage when used as an intermediate heating chamber that is joined on either side to a process chamber that is constructed, at least in part, of an electrically conductive material.
In another aspect of the present invention, the gas-tight enclosure may comprise a non-electrically conductive material and an electromagnetic shunt may be placed around the induction means outside of the enclosure to restrict the magnetic field upstream and downstream of the induction means.
In another aspect of the present invention, the gas-tight enclosure may comprise a non-electrically conductive material that includes one or more flexible elements to compensate for thermal expansion of one or more connected chambers.
The above and other aspects of the invention are set forth in this specification and the appended claims.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
Referring now to the drawings, wherein like numerals indicate like elements, there is shown in
Enclosure 12 comprises non-electrically conductive material 12a and electromagnetic shield material 12b. The non-electrically conductive material is used at least in the regions of the enclosure where the magnetic field passes to couple with the workpiece as it passes through the enclosure. In this non-limiting example of the invention, the electromagnetic shield material is used at least in the regions of the enclosure where the magnetic field extends upstream and downstream of the induction means, thereby restricting the upstream and downstream travel of the magnetic field and substantially decreasing the overall length of the induction heating apparatus.
The “L-shaped” electromagnetic shield material of enclosure 12 as shown in
Use of the electromagnetic shield regions is of particular advantage when the induction heating apparatus of the present invention is used as an intermediate heating chamber that is connected to an upstream and/or downstream process chamber. For example, in
The electromagnetic shield material can comprise an electrically conductive material, such as a copper or an aluminum composition plate, or a high or medium magnetic permeability material, such as but not limited to, MuMetal formed in a sheet, foil or mesh, and electrically grounded, as suitable for a particular application.
The enclosure is substantially gas-tight in that openings must be provided for pass through of the workpiece, and can be thermally insulated to retain heat in the enclosure. The enclosure may optionally include means for injecting a gaseous composition into the enclosure and/or means for evacuating a gaseous composition from the chamber. The enclosure may include additional structural elements that the magnetic field coupling with the workpiece does not pass through.
The utilized heating inductor, or induction means 14, may be any type of heating inductor, including but not limited to, one or more inductors shaped as coils or sheets, connected in series and/or parallel, wherein the one or more inductors generate longitudinal or transverse flux fields.
In
In
In alternate examples of the invention, the gas-tight enclosure may comprise a non-electrically conductive material 12a″ in which electromagnetic shield material 12b″ is disposed as shown in
In all examples of the invention, workpiece 90 may comprise a continuous workpiece, such as a strip or wire, or multiple discrete workpieces suitably fed through the enclosure, for example, by a conveyor system.
The above examples of the invention have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the invention has been described with reference to various embodiments, the words used herein are words of description and illustration, rather than words of limitations. Although the invention has been described herein with reference to particular means, materials and embodiments, the invention is not intended to be limited to the particulars disclosed herein; rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may effect numerous modifications thereto, and changes may be made without departing from the scope of the invention in its aspects.
This is a divisional application of application Ser. No. 11/650,752, filed Jan. 8, 2007, which application claims the benefit of U.S. Provisional Application No. 60/757,355, filed Jan. 9, 2006, both of which applications are hereby incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60757355 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11650752 | Jan 2007 | US |
Child | 12347653 | US |