This disclosure relates to control switches. More particularly, this disclosure relates to stand-alone and add-on electronic systems for remote actuation of momentary contact control switches with mechanical biases.
The written disclosure herein describes illustrative embodiments that are non-limiting and non-exhaustive. Reference is made to certain of such illustrative embodiments that are depicted in the figures described below.
A wide variety of switches may be employed in electric power transmission and distribution systems. Momentary contact switches may be employed that have two or three positions that correspond to two or three different electrical states. In various embodiments, a momentary contact switch may have a default or “normal” position corresponding to a default or “normal” electrical state. A two-position momentary contact switch may be temporarily toggled to a second electrical state.
An example of a two-position momentary contact switch is a button switch. A default or normal state of the button switch may close electrical contacts to allow electric current to flow in a circuit. A spring-loaded button of the button switch may be manually depressed to temporarily open the electrical contacts of the circuit and prevent current flow. Once the spring-loaded button is released, a biasing spring may return the spring-loaded button to the default or normal state and the electrical contacts may be closed again. Electrically equivalent momentary contact switches may utilize any of a wide variety of physical approaches, including without limitation a knob, handle, toggle, paddle switch, biased slider, and/or a button with a deformable biasing member.
Momentary contact switches may also include multiple possible electrical states. For example, a paddle switch may have a default, middle state corresponding to a first electrical state. Toggling the paddle switch in one direction may correspond to a second electrical state, while toggling the paddle switch in the other direction may correspond to a third electrical state. In some embodiments, a rotatable handle may be biased to a center position corresponding to a default or “normal” electrical state. The rotatable handle may be rotated counterclockwise to a second electrical state or rotated clockwise to a third electrical state.
As a specific example, a momentary contact switch may be used to open or close breakers, sectionalizers, and other electrical equipment in an electric power transmission and distribution system. A switch associated with a circuit breaker in an electric power transmission and distribution system may be biased to a default position that corresponds to a normal state of the circuit breaker. A handle of the switch may be manually rotated counterclockwise to a trip position of the circuit breaker or rotated clockwise to a close position of the circuit breaker. Thus, each rotational position of the handle may correspond to a unique mechanical state of the breaker (e.g., normal, trip, and close).
In some embodiments, each rotational position of a handle (or other toggle) of the switch may correspond to unique electrical states of the switch in addition to or instead of unique mechanical states. In some embodiments, the handle or other toggle of a switch may be both manually operable and electrically operable. For example, the handle associated with a switch may be manually rotated (clockwise or counterclockwise) to cause a shaft to rotate from a default or “normal” position to either a clockwise or counterclockwise position. As previously noted, for a momentary contact switch, the shaft may be biased to return to the default or normal position once the handle is manually released. The shaft bias may directly bias the shaft or may bias the shaft via a rotational force provided by another mechanical component connected to the shaft.
In some embodiments, an electronically controlled actuator may also be capable of rotating the shaft to the clockwise and counterclockwise positions. In some embodiments, the electronically controlled actuator may electronically return the shaft to the default or normal position. In other embodiments, the shaft may be biased to return to the default or normal position as described in conjunction with the manual rotation by the handle. In various embodiments, the electronically controlled actuator may not impact or affect the manual operation of the momentary switch by the handle.
The presently-described systems and methods generally relate to a momentary contact switch with a rotatable shaft, the rotation of which allows for the selection of different mechanical states of the switch beyond the basic change in shaft position. For example, the unique mechanical states of the switch may correspond to trip, normal, and close states of a breaker. In other embodiments, the mechanical states of the switch may correspond to unique electrical states of the switch (e.g., open and closed). The present disclosure contemplates an electronically controlled actuator that can be added to an existing, manual, shaft-based momentary contact switch.
The present disclosure also contemplates a combination momentary contact switch that allows for both manual and electronic actuation by rotating a shaft between two or three rotational positions. It is appreciated that many aspects of the presently-described systems and methods could be modified for use with other types of switches, used in other applications besides electric power transmission and distribution systems, and/or modified for other electrical and even non-electrical applications in which the momentary rotation of shaft between two or more rotational positions is desirable.
In one particular embodiment, a momentary contact switch includes a shaft that is rotatable between first, second, and third rotational positions. Each of the rotational positions corresponds to a unique mechanical state of the switch. For example, in the case of a circuit breaker, the first position may correspond to a normal position of the circuit breaker. The second position may be realized by a counterclockwise rotation of the shaft and correspond to a trip position of the circuit breaker. The third position may be realized by a clockwise rotation of the shaft and correspond to a close position of the circuit breaker.
A manually operable handle may be coupled to the shaft to allow for manual rotation of the shaft between the first, second, and third rotational positions. The handle and/or the shaft may be biased to return the shaft and the handle to the first position after momentary rotation to the first or second rotational positions. The electronically controlled actuator may include a pair of rotary arms, a pair of pull arms, a push arm, an auxiliary solenoid, and master solenoid. The first rotary arm may be configured such that a clockwise rotation of the first rotary arm about a pivot point causes the shaft to rotate in a counterclockwise direction to the second rotational position. The second rotary arm may be configured such that a counterclockwise rotation of the second rotary arm about a pivot point causes the shaft to rotate in a clockwise direction to the third rotational position.
In some embodiments, the pair of rotary arms may rotate the shaft by contacting a shaft arm that is directly coupled to the shaft, rather than directly rotating the shaft. The shaft arm may include a contact surface for the rotary arm to provide a leveraged rotational force on the shaft itself. The pair of rotary arms may be selectively rotated about the respective pivot points by a downward force applied by a corresponding pair of pull arms. A push arm may selectively engage one of the pull arms with one of the rotary arms, while simultaneously disengaging the other pull arm from the other rotary arm.
In various embodiments, each rotary arm includes a channel and notch. The channel and notch may be cutouts in the rotary arm, such that they form a passthrough aperture. Alternatively, a channel and notch may be formed in a surface of each of the rotary arms without extending through an opposing surface of each of the rotary arms. The push arm may selectively push a coupling portion of one of the pull arms into the notch of one of the rotary arms (to engage the rotary arm), while simultaneously pushing the coupling portion of the other pull arm into the channel of the other rotary arm (to disengage the other rotary arm). Accordingly, only one rotary arm is engaged at a time.
The auxiliary solenoid may control the push arm to selectively engage either one of the rotary arms depending on whether a clockwise or counterclockwise rotation is desired. A master solenoid may exert a downward force on the two pull arms. The pull arm that is coupled within the notch of the rotary arm (engaged) will force that rotary arm to rotate about the pivot point. The pull arm that is coupled within the channel of the rotary arm (disengaged) will not cause the rotary arm to rotate. Rather, the coupling portion of the disengaged pull arm will translate or slide within the channel of the disengaged rotary arm.
The master solenoid may be a linear solenoid that, when energized, begins a descendant linear trajectory that causes the pull arms to descend. Once the solenoid is de-energized, the unit will return back to its initial position (normal) by internal spring action (or via another biasing force).
The embodiments of the disclosure can be further understood by reference to the drawings, wherein like parts are designated by like numerals throughout. The components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments.
It is particularly appreciated that many of the components could be resized, reshaped, lengthened, shortened, etc. It is also appreciated that a wide variety of connections, coupling, and fasteners could be utilized in addition to or as alternatives to those shown in the figures. In fact, many possible options are not explicitly illustrated to avoid obscuring other aspects of the illustrated embodiments. The various components described herein may be manufactured using a wide variety of metals, plastics, woods, and other materials known to be useful in manufacturing.
The phrases “connected to,” “coupled to,” and “in communication with” refer to any form of interaction between two or more components, including mechanical, electrical, magnetic, and electromagnetic interaction, depending on the context. Two components may be connected to each other, even though they are not in direct contact with each other, and even though there may be intermediary devices between the two components.
One or more of the described systems and methods may be implemented, monitored, and/or controlled by an intelligent electronic device (IED). As used herein, the term “IED” may refer to any microprocessor-based device that monitors, controls, automates, and/or protects monitored equipment within a system. Such devices may include, for example, remote terminal units, differential relays, distance relays, directional relays, feeder relays, overcurrent relays, voltage regulator controls, voltage relays, breaker failure relays, generator relays, motor relays, automation controllers, bay controllers, meters, recloser controls, communications processors, computing platforms, programmable logic controllers (PLCs), programmable automation controllers, input and output modules, motor drives, and the like.
IEDs may be connected to a network, and communication on the network may be facilitated by networking devices including, but not limited to, multiplexers, routers, hubs, gateways, firewalls, and switches. Furthermore, networking and communication devices may be incorporated in an IED or be in communication with an IED. The term “IED” may be used interchangeably to describe an individual IED or a system comprising multiple IEDs.
Specifically, an electronically controlled actuator for a momentary contact switch may be embodied within an IED, report data to an IED, or be controlled by an IED. For example, an IED may transmit a signal to a data port of the electronically controlled actuator to cause the momentary contact switch to rotate clockwise or counterclockwise to trip or close a circuit breaker. Remote actuation of the momentary contact switch may replace or augment manual operability of the momentary contact switch by, for example, a rotatable handle.
The systems and methods described herein relate to rotation of a shaft associated with an electromechanical switch housed within the switch body 210. The specific components of the electromechanical switch may be adapted for a particular application and are not described in detail herein to avoid obscuring the various embodiments of this disclosure.
An auxiliary solenoid 360 also embodied as a linear solenoid in the illustrated embodiment, includes a solenoid arm 362 that can be extended and retracted to move a push arm 390 left and right. With the solenoid arm 362 in the retracted position (as illustrated in
Along with the disengagement of the left pull arm 381, the retracted solenoid arm 362 and left movement of the push arm 390 may forcefully engage the right pull arm 382 with the right rotary arm 352. In other embodiments, as noted above, a spring or other biasing member may cause the right pull arm 382 to engage the right rotary arm 352. In either embodiment, a coupling portion of the right pull arm 382 is positioned within a notch of the right rotary arm 352. When the master solenoid 375 is actuated, the pull arms 381 and 382 descend (i.e., are pulled down) with the master solenoid 375. With the left pull arm 381 disengaged, the coupling portion of the left pull arm 381 descends within the channel of the left rotary arm 351 such that the left rotary arm 351 does not rotate. In contrast, with the right pull arm 382 engaged within the notch of the right rotary arm 352, the right rotary arm 352 will rotate counterclockwise about a pivot point as the right pull arm 382 descends. As the right rotary arm 352 rotates, it will contact the shaft arm 335 coupled to the shaft 330 and cause the shaft 330 to rotate clockwise.
One or more mechanical biases may return the shaft 330 to the unrotated state. Mechanical biases 395, 396 and/or 397 may provide a mechanical bias to return pull arms 381 and 382 and/or the rotary arms 351 and 352 to the unrotated, default position. For instance, the spring bias 396 is shown extended in
As previously described, biasing members may bias, directly or indirectly, the shaft 430 back to the unrotated position. Biasing members, such as biasing springs 495, 496, and 497, bias rotary arms 451 and 452 back to the unrotated state and pull arms 481 and 482 back to the un-descended state.
In the forgoing embodiments, the auxiliary solenoid 460 and the master solenoid 475 are described and illustrated as linear solenoids. In alternative embodiments, the auxiliary solenoid and/or master solenoid may be embodied as a rotary solenoid and/or utilize any of a wide variety of solenoid technologies, including but not limited to hydraulic, electromechanical, pneumatic, and inductive technologies.
Specific embodiments and applications of the disclosure are described above and illustrated in the figures. It is, however, understood that many adaptations and modifications can be made to the precise configurations and components detailed above. In some cases, well-known features, structures, or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It is also appreciated that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations. Thus, all feasible permutations and combinations of embodiments are contemplated.
In the description above, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations and combinations of the independent claims with their dependent claims.
It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3649793 | MacLean | Mar 1972 | A |
4001740 | MacLean | Jan 1977 | A |
4255733 | MacLean | Mar 1981 | A |
5762180 | Pomatto | Jun 1998 | A |
6015958 | Pomatto | Jan 2000 | A |
9653244 | Castro Maciel | May 2017 | B1 |
9964189 | Rodriguez Najera | May 2018 | B2 |
20100288610 | Krieger | Nov 2010 | A1 |
20170103865 | Ji | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
WO-2015113313 | Aug 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20190348230 A1 | Nov 2019 | US |