Electromechanical engine valve actuator system with loss compensation controller

Information

  • Patent Grant
  • 6536387
  • Patent Number
    6,536,387
  • Date Filed
    Thursday, September 27, 2001
    22 years ago
  • Date Issued
    Tuesday, March 25, 2003
    21 years ago
Abstract
An electromechanical engine valve actuation system 10 is provided including a loss compensation controller 16, a first actuator 18, a second actuator 20, an armature element 26 and a motion detector 32. The loss compensation controller 16 calculates the mechanical losses of the armature element and controls the first actuator 18 and the second actuator 20 in response to the mechanical losses in order to reduce the impact of the armature element 26.
Description




TECHNICAL FIELD




The present invention relates generally to an electromechanical engine valve actuator system and more particularly to an electromechanical engine valve actuator system with a loss compensation controller for reduced armature impact.




BACKGROUND OF THE INVENTION




Electromechanical engine valve actuation systems utilize electromagnetic actuators to control the movement of an armature and thereby the engine valve. Typically, the armature is moved back and forth between two electromagnets and is held against the face of these magnets depending on which one is actuated. Commonly, one electromagnet represents a closing magnet while the other one represents an opening magnet. To move the cylinder valve from an open position to a closed position, the power is shut off at the open magnet. A restoring spring begins to move the armature away from the open magnet. As the armature passed its resting position, a second restoring spring slows the armature's movement as it approaches the closing magnet. The closing magnet is then charged with a current to capture and hold the armature into the closing position. Often, during this procedure, however, the armature may impact the face of the activated electromagnet with undesirable force. This impact can result in undesirable acoustics as well as undesirable wear on the actuator. The undesirable wear may result in low reliability and durability.




A variety of methods have been developed in an effort to reduce the impact of the actuator on the face of the actuator element. One directional approach to reducing such impact has taken the route of modifying the actuator shape in an attempt to reduce seating impact. These approaches can have negative impacts on design and production costs and leave significant room for improvement in the reduction of seating impact. Other soft seating approaches have contemplated limiting the voltage applied to the coil to a maximum valve when the armature approaches the pole face. Although this method may limit seating impact, it too leaves room for improvement. Present systems often fail to allow for adaptability once integrated into an engine system. A more adaptive system that allowed for and accommodated changes in the engine valve actuation system would be highly desirable.




In an ideal valve actuation system the valve would experience no losses during movement. In such a perfect scenario, the armature would automatically and naturally oscillate between open and closed positions and the armature velocity when it touched the opposite surface would be exactly zero. In reality, losses occur from many effects, such as friction, eddy current losses and aerodynamic forces for example. These forces prevent the armature from reaching the opposing surface without outside excitation. It is implementation that often results in negative armature impact.




It would, therefore, be highly desirable to have an electromechanical enginevalve actuation system that provided reduced actuator impact based on compensating for the armature losses such that the electromechanical engine valve actuation system has improved performance and is more adaptive and reliable than present systems.




SUMMARY OF THE INVENTION




It is therefore one object of the present invention to provide an electromechanical engine valve actuation system with a loss compensation controller for reduced armature impact. It is further an object of the present invention to provide such an electromechanical engine valve actuation system with improved flexibility and reliability in reducing actuator impact.




In accordance with the objects of the present invention, an electromechanical engine valve actuator system is provided. The electromechanical engine valve actuation system includes an armature, a first actuator, and a second actuator. A motion detector generates a signal in relation to the armature element's position. The signal is sent to a loss compensation controller that predicts mechanical loses based on the signal. The loss compensation controller controls the first actuator and the second actuator in response to the predicted mechanical losses.




Other objects and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an illustration of an embodiment of an electromechanical engine valve actuation system in accordance with the present invention; and





FIG. 2

is a flow chart of the electromechanical engine valve actuation system in accordance with the present invention.





FIG. 3A

is a cross-sectional illustration of a valve actuator in accordance with the present invention;





FIG. 3B

is a top view detail of a motion detector as illustrated in

FIG. 3A

in accordance with the present invention;





FIG. 4A

is a cross-sectional illustration of a valve actuator in accordance with the present invention;





FIG. 4B

is a top view detail of a motion detector as illustrated in

FIG. 4A

in accordance with the present invention; and





FIG. 5

is a block diagram of loss compensation controllers of the electrical engine valve actuation system in accordance with the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to

FIG. 1

, which is an illustration of an embodiment of an electromechanical engine valve actuation


10


in accordance with the present invention. The electromechanical engine valve actuation system


10


includes a valve actuator


12


, a switching element


14


and a loss compensation controller


16


. The valve actuator


12


includes a closing actuator


18


, an opening actuator


20


, a first restoring spring


22


, a second restoring spring


24


, and an armature element


26


attached to a stem


28


of a cylinder valve


30


.




The present invention further includes a motion detector


32


positioned between the closing actuator


18


and the opening actuator


20


. The use of a motion detector


32


allows loss compensation controller


16


to monitor the position and velocity of the armature element


26


. By monitoring the position and velocity of the armature element


26


, the loss compensation controller


16


can predict the mechanical losses of the armature element


26


using standard and well known engineering techniques. Although a variety of calculation methods are well known in the art, one process utilizes look-up-tables to calculate aerodynamic losses and coulomb and viscous friction calculations to predict frictional losses. Two methods for developing look-up-tables to determine aerodynamic losses are methods well known to engineers. The first method for developing such tables would be through experimental measurements of aerodynamic loss for a specific design of engine valve system


10


throughout a variety of conditions. A second known method for determination of aerodynamic losses would be through the use of fluid-dynamics modeling calculations. As it is logical that aerodynamic losses due to movement of the armature element


26


will be related to the speed of the armature element


26


(and henceforth engine speed), the engine speed may be utilized as additional input data to find appropriate aerodynamic loss values in the look-up-tables. It should be understood that although the aerodynamic losses may not represent a large portion of the losses experienced by the armature element


26


, they nonetheless can be utilized to fine tune the loss compensation controller


16


. Similarly the calculation of coulomb and viscous friction can further be utilized to fine tune the compensation controller


16


The loss compensation controller


16


can utilize such mechanical losses to adjust the power to the closing actuator


18


or the opening actuator


20


to reduce the impact of the armature element


26


when it comes in contact with either the closing actuator


18


or the opening actuator


20


. The use of the motion detector


32


in combination with the loss compensation controller


16


allows for a real time (i.e. during operation) prediction of the armature element


26


losses and thereby allows for such losses to be compensated for allowing for greater control and adjustment of the armature element's


26


movement.




Although a wide variety of motion detectors


32


are contemplated for use with the present invention, one embodiment, illustrated in

FIG. 3

, utilizes a permanent magnet


34


positioned between a motion detector coil


36


to create a discrete motion detector


32


. In this embodiment, the armature element


26


closes the flux path created by the permanent magnet


34


allowing the controller element


16


which is in communication with the detector coil


36


to determine the position and velocity of the armature element


26


as it passes the motion detector


32


. Although one form of discrete motion detector


32


has been described, it should be understood that a wide variety of discrete motion detectors are contemplated by the present invention. The discrete motion detector


32


may also be formed in a variety of configurations, including a square configuration (see

FIGS. 3A and 3B

) or a circular configuration (see FIGS.


4


A and


4


B). It should be understood, however, that these configurations are primarily for design and packaging purposes and are not intended as a limitation on the design of the discrete motion detector


32


.




The loss compensation controller


16


powers and depowers the closing actuator


18


and the opening actuator


20


through the use of a switching element


14


. The use of switching elements


14


to route power to valve actuators


12


is well known in the prior art. The present invention, however, in one embodiment, contemplates the novel use of a regenerative switching power converter as a switching element


14


. The regenerative switching power converter


14


includes a first closing gate


38


, a second closing gate


40


, a first closing diode


42


and a second closing diode


44


. The use of such a dual gate/dual diode configuration allows a switch


14


to allow magnetic field energy stored in the closing actuator


18


to be dumped back into a battery (not shown) and thereby increase the efficiency of the electromechanical engine valve actuation system


10


. In a similar fashion, the switching element


14


also includes a first opening gate


46


, a second opening gate


48


, a first opening diode


50


, and a second opening diode


52


. This portion of the switching element


14


allows the magnetic field energy stored in the opening actuator


20


to be dumped back into a battery (not shown) when the opening actuator


20


is deactivated. The use of such regenerative switching power converters is known in the electronic industry, however, its unique use in combination with the valve actuator


12


as described by the present invention creates a novel electromechanical engine valve actuation system


10


with both improved performance and efficiency.




Referring now to

FIG. 2

, which is a flow chart of the operation of the electromechanical engine valve actuation system


10


as contemplated by the present invention. A method of controlling the valve actuator


12


to reduce armature element


26


impact is illustrated. The method includes determining transition type


60


. Determining transition type


60


simply is determining if the armature element


26


is to be moved from a closed position into an open position


62


or from an open position into a closed position


64


. If the actuator element


26


is to be moved from a closed position to an open position


62


, an initial step of verifying the actuator element


26


is in the closed position


66


may be performed. If it is, the step of rapidly unpowering the closing actuator


68


is performed. Once the closing actuator


18


is unpowered, the first restoring spring


22


will move the armature element


26


away from the closing actuator


18


and towards the opening actuator


20


. The motion detector


32


is used to determine when the armature element


26


passes the midpoint between the closing actuator


18


and the opening actuator


20


. Once the step of determining is the actuator element has passed the midpoint


70


has been determined, the step of powering the opening coil


72


is performed. The controller element


16


uses the information provided by the motion detector


32


to determine the position and velocity of the armature element


26


. With this information, the loss compensation controller


16


can calculate the mechanical losses of the armature element


26


and can power the opening actuator


20


with just enough energy to allow the armature element


26


to overcome such mechanical losses and reach the opening actuator


20


. A step of verifying the energy sent to the opening actuator


74


is then performed. Once the correct amount of energy has been sent to the opening actuator


20


, the power to the opening actuator


20


is switched off and the armature element


26


moves using momentum towards the opening actuator


20


. This step is known as freewheeling the opening coil


76


. While the armature element


26


moves toward the opening actuator


20


under its own momentum, the loss compensation controller


16


calculates the time required for the armature element


26


to reach the opening actuator


20


. Once the step known as reaching holding time


78


has expired, the step of switching the opening actuator to a holding current


80


is performed. At this step, the opening actuator


20


is powered with a minimum current necessary to hold the armature element


26


against the opening actuator


20


. Using this method, including monitoring when the armature element


26


passes the midpoint


70


, the power to the opening actuator


20


can be controlled by the loss compensation controller


16


such that the attractive force exerted on the armature element


26


is just enough to compensate for mechanical losses and the armature element


26


will therefore come softly into contact with opening actuator


20


. This, in turn, reduces the impact force of the armature element


26


against the opening actuator


20


and thereby increase the performance and reliability of the electromechanical engine valve actuation system


10


.




If, on the other hand, the armature element


26


is moving from an open position to a closing position


64


, a set of similar steps are performed. In this scenario, the steps consist primarily of determining if the actuator element is in an opened position


82


, rapidly unpowering the opened actuator


84


, monitoring when the actuator element passes the midpoint between the open actuator and the closed actuator


86


, powering closing actuator


88


, verifying the energy powered to the closing coil


90


, allowing the actuator element to freewheel towards the closing coil


92


, calculating the time required for the actuator element to come into contact with the closing actuator


94


and switching the closing coil to a holding current


96


. It should be understood that although the present invention has been described in terns of an opened position and a closed position, that these terms are strictly for the purposes of description and not intended as limitations on the present invention. A first position and a second position may be used interchangeably for the terms opened and closed.




In another embodiment illustrated in

FIG. 5

, it is contemplated that the loss compensation controller


16


may include an input energy calculator


100


as well as the mechanical loss calculator


110


. In addition, the loss compensation controller


16


may use a variety of additional input data to predict the total mechanical losses of the armature element


26


. One such additional input is contemplated to be engine status, such as engine speed and engine load for example, from the engine control unit


120


. This information is particularly useful in calculating aerodynamic losses based on look-up tables. Although the calculation of frictional and aerodynamic losses have been discussed, it should be understood that both of these losses need not be calculated to practice the present invention. It should also be understood that a wide variety of methods of calculating these losses are known in the prior art and are contemplated by the present invention.




While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.



Claims
  • 1. An electromechanical engine valve actuation system comprising:a loss compensation controller; a first actuator; a second actuator, an armature element positioned between said first actuator and said second actuator; and a motion detector generating a signal in relation to said armature element's position, said motion detector element sending said signal to said loss compensation controller when said armature element reaches a midpoint between said first actuator and said second actuator, wherein said loss compensation controller calculates mechanical losses of said armature element and controls said first actuator and said second actuator in response to said mechanical losses to reduce the impact of said armature element by rapidly unpowering said first actuator, followed by rapidly first powering said second actuator when said armature element reaches said midpoint, rapidly unpowering said second actuator immediately after said first powering to allow said armature element to free wheel towards said second actuator, and second powering said second actuator with a holding current once said armature element reaches said second actuator.
  • 2. An electromechanical engine valve actuation system as described in claim 1 wherein said motion detector comprises:a permanent magnet; and a motion detector coil.
  • 3. An electromechanical engine valve actuation system as described in claim 1 further comprising:a first restoring spring; and a second restoring spring.
  • 4. An electromechanical engine valve actuation system A method as recited in claim 1 further comprising:a switching element.
  • 5. An electromechanical engine valve actuation system as described in claim 4 wherein said switching element comprising a regenerative switching power converter.
  • 6. An electromechanical engine valve actuation system as described in claim 4 wherein said switching element comprises:at least two closing gates and at least two diodes forming a regenerative switching power converter.
  • 7. An electromechanical engine valve actuation system as described in claim 1 wherein said first actuator is a closing actuator for closing an engine valve; andsaid second actuator is an opening actuator to open said engine valve.
  • 8. An electromechanical engine valve actuation system as described in claim 1 wherein said mechanical losses include frictional losses.
  • 9. An electromechanical engine valve actuation system as described in claim 1 wherein said mechanical losses include aerodynamic losses determined using an engine status input.
  • 10. An electromechanical engine valve actuation system comprising:a loss compensation controller; a switching element; a first actuator; an second actuator, an armature element positioned between said first actuator and said second actuator; a first restoring spring biasing said armature element away from said first actuator; a second restoring spring biasing said armature element away from said second actuator; and a motion detector generating a signal in relation to said armature element's position, said motion detector element sending said signal to said loss compensation controller, wherein said loss compensation controller calculates the mechanical losses of said armature element as said armature element is moving from said first actuator to said second actuator, said loss compensation controller controlling said first actuator and said second actuator in response to said mechanical losses to reduce the impact of said armature element by rapidly unpowering said first actuator, followed by rapidly first powering said second actuator when said armature element reaches a midpoint, rapidly unpowering said second actuator immediately after said first powering to allow said armature element to free wheel towards said second actuator, and second powering said second actuator with a holding current once said armature element reaches said second actuator.
  • 11. An electromechanical engine valve actuation system as described in claim 10 wherein said motion detector comprises:a permanent magnet; and a motion detector coil.
  • 12. An electromechanical engine valve actuation system as described in claim 10 wherein said switching element comprising a regenerative switching power converter.
  • 13. An electromechanical engine valve actuation system as described in claim 10 wherein said switching element comprises:at least two closing gates and at least two diodes forming a regenerative switching power converter.
  • 14. An electromechanical engine valve actuation system as described in claim 10 wherein said first actuator is a closing actuator for closing an engine valve; andsaid second actuator is an opening actuator to open said engine valve.
  • 15. An electromechanical engine valve actuation system as described in claim 10 wherein said mechanical losses include aerodynamic losses determined using an engine status input.
  • 16. A method of moving an armature element from a first position in contact with a first actuator to a second position in contact with a second actuator comprising:rapidly unpowering the first actuator; monitoring, after said rapidly unpowering of the first actuator, when the armature element reaches a midpoint between the first actuator and the second actuator using a motion detector; calculating the mechanical losses of said armature element as said armature element is moving from said first actuator to said second actuator; rapidly first powering the second actuator to compensate for said mechanical losses when the actuator element reaches said midpoint; rapidly unpowering the second actuator immediately after said first powering and allowing the armature element to freewheel towards the second actuator; and powering the second actuator with a holding current when the armature element reaches the second actuator.
  • 17. A method as described in claim 16, further comprising:moving the armature element away from the first actuator using a first restoring spring.
  • 18. A method as described in claim 16, further comprising:capturing at least a portion of the magnetic energy stored in the first actuator.
  • 19. A method as described in claim 16, wherein said motion detector comprises:a permanent magnet; and a motion detector coil.
  • 20. A method as described in claim 16 further comprising:monitoring the armature elements position and velocity using said motion detector.
US Referenced Citations (8)
Number Name Date Kind
5884591 Giese Mar 1999 A
6044814 Fuwa Apr 2000 A
6141201 Schmitz Oct 2000 A
6152094 Kirschbaum Nov 2000 A
6340008 Boie et al. Jan 2002 B1
6378473 Yamaki et al. Apr 2002 B2
6390036 Yuuki May 2002 B1
20020011224 Kumaki et al. Jan 2002 A1
Non-Patent Literature Citations (1)
Entry
Camless engine, Automotive Engineering International, Dec. 2002, pp. 86.