The field to which the disclosure generally relates includes electromechanical latches.
Electromechanical latches have many uses, for example, to latch drawers to cabinets. Conventional latches typically include complex mechanical parts and kinematics, and costly electrical devices and configurations. Also, although conventional latches may be used to latch and unlatch objects, they are not used to eject the objects.
The present disclosure is directed to an electromechanical latch and ejector to selectively unlatch and eject an object.
Illustrative embodiments of the invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the embodiment(s) is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.
The drawers 100 may be arranged in the apparatus 10 in an array, as shown, or in any other suitable arrangement. In an array, the drawers 100 may be identified by column and row. For example, as shown in
The apparatus 10 also may include a computer 50 and one or more batteries 18 for powering the computer 50, drawers 100, EEPROM, release mechanisms, and any other powered elements of the apparatus 10. Of course, the apparatus 10 may be supplied with power in any other suitable manner, including AC utility or generator power, or the like.
In a particular example illustrated in
The top cover 104 includes a top base 122 and flanges 124 extending therefrom, wherein the top cover 104 is coupled to the main body 102 in any suitable manner. For example, the sides 110 of the main body 102 may be frictionally engaged to the flanges 124 of the top cover, or the sides 110 of the main body 102 may be frictionally slidably interengaged to the flanges 124 of the top cover 104. The top cover 104 may be identifiable as part number C1.5LG6 available from PANDUIT of Tinley Park, Ill. The top cover 104 also may be custom molded, for example, using ALUMILITE brand molds and techniques.
The front cover 106 includes a front portion 118, a rear portion 120 coupled to the main body 102, and the outlet 101 extending therethrough. The front cover 106 may include flanges 121 extending from the rear portion 120 for coupling to the sides 110 of the main body 102 in any suitable manner, for example via fasteners 119.
Referring to
As shown in
Referring to
The bracket 212 may have a first flange 212a coupled to the backplane 180 (
The actuator 214 may include a powertrain, which in one embodiment includes an electrical motor, and in another embodiment also may include a drivetrain coupled to the motor. The drivetrain may include a gearbox, belt and pulley reducer, or the like, or any other suitable type of speed reducer. In any case, the motor may be powered and controlled in any suitable manner and may be electrically coupled to the backplane 180 in any suitable manner. For example, the powertrain may include a GM 10 geared pager motor product available from Solarbotics of Calgary, Canada. The actuator 214 may be coupled to the bracket 212 by fasteners, pins, clips, or the like, or in any other suitable manner. In any event, the actuator 214 includes an output shaft 215 that may extend through the bracket 212, for example, through the second flange 212b.
The ejector member 216 may include an ejector hub 226 that may be coupled to the output shaft 215 of the actuator 214 in any suitable manner, for example, via an interference fit and cooperating flats. The hub 226 may include a rotational position reference 228, which may in the form of a detent, for cooperating with a portion of the sensor 224 as will be described herein below. The ejector member 216 also may have angularly spaced stops 230, 232 with an angular space therebetween for receiving a portion of the latch member 218 as will be described herein below. The ejector member 216 further may include a shaft portion 234 for carrying a portion of the latch member 218 as will be described herein below. Moreover, the ejector member 216 may include an ejector arm 236 that extends radially outwardly from the ejector hub 226 and terminates in an end 238 that may be rounded for cooperation with the drawer 100 (
The latch member 218 may include a latch hub 238 that may be disposed generally axially adjacent to the ejector hub 226 and rotatably carried on the shaft portion 234 thereof. The latch member 218 also may include a projection 240 axially extending from the latch hub 238 and disposed in the angular space between the stops 230, 232 of the ejector member 216. The latch member 218 further may include a latch arm 242 extending radially outwardly from the latch hub 238 and having a bayonet end with a barb 244.
Still referring to
Accordingly, the latch member 218 may be coupled with respect to the ejector member 216 via a rotary lost motion connection. In other words, the ejector member 216 may be rotationally fixed with respect to the actuator output shaft 215, and the latch member 218 may be pivotable with respect to the actuator output shaft 215.
The fastener 222 may be a retaining nut, speed nut, tinnerman nut, clip, or any other suitable fastener. The fastener 222 may be coupled to the end of the shaft portion 234 of the ejector member 216, for example, by pressing, staking, or the like.
The sensor 224 may be electromechanical and may include a translatable plunger 248 to cooperate with the positional reference 228 of the ejector member 216. The sensor 224 may be coupled to the bracket 212 by clips, pins, fasteners, or the like, or in any other suitable manner. Also, the sensor 224 may be disposed on the same side of the second flange 212b of the bracket 212 as the ejector and latch members 216, 218. The sensor 224 may be electrically coupled in any suitable manner to one or both of the actuator 214 and/or the computer 50 (
Referring now to
The backplane 180 may be communicated in any suitable manner to the computer 50, which is in communication with the connectors 141 and is programmed in accord with the array of compartments 16. Accordingly, the locations of the drawers 100 in the compartments 16 can be communicated to and stored in the computer 50 in any suitable manner.
The apparatus 10 also may include a guide pin 250 that may be coupled to the backplane 180 to align the drawer 100 with respect to the backplane 180 for good alignment of the connectors 140, 141 and the latch and ejector 210 with respect to the latch aperture 116. For example, the guide pin 250 may extend through the backplane 180 and a fastener 252 may fasten the guide pin 250 to the backplane 180. The guide pin 250 is adapted for cooperation with the guide pin passage 135 of the drawer 100.
In use, the drawer 100 may be pushed toward the backplane 180 wherein the latch member 218 contacts a rear wall of the drawer 100, for example, the rear surface of the rear cover 107 of the drawer 100. Also, the guide pin 250 engages the guide pin passage 135, and the connectors 140, 141 eventually engage one another. The cam surface 117 of the rear cover 107 may initially engage an angled surface at the bayonet end of the latch member 218, and the guide pin 250 may engage the corresponding passage 135 to stably pilot the drawer 100 for good connector alignment and engagement.
As the drawer 100 continues advancing and nears its closed position, the connectors 140, 141 operatively engage. At this point, the computer 50 (
As shown in
The home position and latched position of the latch member 218 may be the same. In the home position, the reference 228 may be in a home position with respect to the sensor 224. More specifically, the plunger 248 may be engaged in the detent in the ejector hub 226 as shown.
In operation, an attendant may use the touchscreen 14 (
With reference to
Accordingly, as shown in
More specifically, the end 238 of the ejector member 216 contacts the rear surface of the rear cover 107 including the cam surface 117. The engagement of the ejector member 216 with the drawer 100 causes ejection or outward displacement of the drawer 100 relative to the backplane 180. Also, the position reference 228 has rotated with respect to the sensor 224, wherein the sensor 224 is in such a state so as to ensure that power is continuously supplied to the actuator 214 until the position reference 228 and the sensor 224 are realigned. For example, the plunger 248 of the sensor 224 may be depressed so as to activate the sensor 224 in a closed-loop configuration to complete a circuit so that power continues to be supplied to the actuator 214.
As shown in
As shown in
The electromechanical latch and ejector 210 is actuated by the logical high output from the chip 318 firing or powering the load driver 316. Accordingly, the load driver 316 activates the relay 314 to power to the actuator 214 causing the ejector member 216 to rotate and, thus, actuate the sensor 224 away from its home position or condition to close the circuit and power the chips 318, 320. The other chip 320 is used to monitor the sensor 224. When the ejector member 216 rotates for one revolution and returns to its home position, the sensor 224 also returns to its home position or condition by virtue of the interaction between the ejector member 216 and the sensor 224. Accordingly, the circuit opens and power is dropped from the load driver 316 thereby deactivating the relay 314. When the relay 314 is deactivated, the power leads to the actuator 214 are shorted together to brake the actuator 214 quickly. Those of ordinary skill in the art will recognize that one or more aspects of the activation and deactivation of the electromechanical latch and ejector 210 may be replaced or supplemented by software code settings of one or both of the chips 318, 320 or elsewhere in the system.
In general, the components of the apparatus 10 may be manufactured according to techniques known to those skilled in the art, including molding, machining, stamping, and the like. Also, the apparatus 10 may be assembled according to known techniques. Likewise, any suitable materials can be used in making the components, such as metals, composites, acetal polymers or other polymeric materials, and the like.
As used in the sections above and claims below, the terms “for example,” “for instance,” and “such as,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components, elements, or items. Similarly, when introducing elements of the invention or the example embodiments thereof, the articles “a,” “an,” “the,” and “the” are intended to mean that there are one or more of the elements. Moreover, directional words such as front, rear, top, bottom, upper, lower, radial, circumferential, axial, lateral, longitudinal, vertical, horizontal, transverse, and/or the like are employed by way of description and not limitation. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Finally, the foregoing description is not a definition of the invention, but is a description of one or more examples of illustrative embodiments of the invention. The statements contained in the foregoing description relate to the particular examples and are not to be construed as limitations on the scope of the invention as claimed below or on the definition of terminology used in the claims, except where terminology is expressly defined above. And although the present invention has been disclosed using a limited number of examples, many other examples are possible and it is not intended herein to mention all of the possible manifestations of the invention. In fact, other modifications, variations, forms, ramifications, substitutions, and/or equivalents will become apparent to those skilled in the art in view of the foregoing description. The present invention is intended to embrace such forms, ramifications, modifications, variations, substitutions, and/or equivalents as fall within the spirit and broad scope of the following claims. In other words, the present invention encompasses many substitutions or equivalents of limitations recited in the following claims. For example, the materials, sizes, and shapes, described above could be readily modified or substituted with other similar materials, sizes, shapes, and/or the like. Therefore, the invention is not limited to the particular examples of illustrative embodiments disclosed herein, but instead is defined solely by the claims below.
This application claims the benefit and is a continuation of U.S. patent application Ser. No. 13/526,807 filed on Jun. 19, 2012, which in turn claims the benefit of U.S. Provisional Application No. 61/508,225, filed Jul. 15, 2011, the contents of which applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2582471 | West | Jan 1952 | A |
2650023 | Aurbach | Aug 1953 | A |
3869064 | Payne | Mar 1975 | A |
4000800 | Loucks, Sr. | Jan 1977 | A |
4035792 | Price | Jul 1977 | A |
4209111 | Lotspeich et al. | Jun 1980 | A |
4221376 | Handen et al. | Sep 1980 | A |
4429639 | Burchart | Feb 1984 | A |
5392951 | Gardner et al. | Feb 1995 | A |
5940306 | Gardner et al. | Aug 1999 | A |
6003008 | Postrel et al. | Dec 1999 | A |
6412654 | Cleeve | Jul 2002 | B1 |
6511138 | Gardner | Jan 2003 | B1 |
7331643 | Huber | Feb 2008 | B2 |
7602135 | Huber et al. | Oct 2009 | B2 |
7668620 | Shoenfeld | Feb 2010 | B2 |
7896149 | Tabata et al. | Mar 2011 | B2 |
8234008 | Weber | Jul 2012 | B2 |
8662606 | Santmyer et al. | Mar 2014 | B2 |
8983653 | Barrett | Mar 2015 | B2 |
9295355 | Kwag et al. | Mar 2016 | B2 |
20020165641 | Manalang et al. | Nov 2002 | A1 |
20030201697 | Richardson | Oct 2003 | A1 |
20030222548 | Richardson | Dec 2003 | A1 |
20090118860 | Sjostrom | May 2009 | A9 |
20100106291 | Campbell | Apr 2010 | A1 |
20100114367 | Barrett et al. | May 2010 | A1 |
20100308704 | Rahilly | Dec 2010 | A1 |
20130018505 | Barrett | Jan 2013 | A1 |
20130118217 | Jelin et al. | May 2013 | A1 |
20130331983 | Barrett et al. | Dec 2013 | A1 |
20140001930 | Slogoff et al. | Jan 2014 | A1 |
20150148946 | Barrett | May 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150148946 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61508225 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13526807 | Jun 2012 | US |
Child | 14613422 | US |