The present invention is intended as an improvement to pop out handle locks used typically in vending machines and utilized to lockingly engage the door to the main chamber of the machine.
In a typical application, a pop out handle system, the door contains a lock mechanism, which includes a pop out handle, actuated by an appropriate key which is exposed to the outer portion of the door. The interior portion of the lock mechanism includes a threaded stud, which extends toward the main chamber of the machine and is typically adapted to be screw threaded into a stud receiving fixture, securely mounted to the inside portion of the main chamber.
To unlock the pop out handle lock, and operator inserts the proper key into the lock placed inside the pop out handle, which actuates the handle to pop towards the user. The handle is then turned counterclockwise, which unscrews the lock stud from the internal locking fixture.
In order to lock the door to the main chamber, the operator reverses the procedure, such that the door is closed and the stud is oriented in linear alignment with the internal locking fixture (which usually contains a threaded nut), then the handle is rotated clockwise, resulting in engaging the stud into the locking fixture. When the thread is fully engaged, the operator depresses the handle into the recess provided by the machine and the depressed position is maintained by the engagement of a locking bolt.
The current design requires significant effort and time to be spent by the person who is filling the vending machine (routeman) when the door is being opened and closed. There is no record of who entered the machine and when the machine was entered. The machine is easily compromised by anyone who has duplicated a key, which is an easy task. If it has been determined that a key had been stolen, or duplicated, there is significant effort, time and expense involved in re-keying the lock.
The present invention is a motorized lock, mounted to the inside of a vending machine door or the cabinet. It is intended to decrease the amount of time required to lock the machine by providing a motorized draw-in feature which will pull the door tight and lock it. This draw-in feature is completely automatic. Further, the present invention allows for quick entry of the vending machine, which is actuated by the routeman showing an electronic key. The control electronics for the lock are capable of a large number of different keys being used to gain entry to the vending machine, and will remember an “audit trail”. The “audit trail” consists of the key that gained access, the date and the time of access. A significant history can be developed, limited only by the size of the memory chips in the controller.
According to the present invention, a gear motor is attached to a slotted link, which pulls a locking hook which hooks a u-bolt, or a headed bolt, which closes the vending machine door. The gear motor is under the control of a microprocessor based circuit which employs three switches for feedback.
The operation of the lock is as follows. For purposes of this description, the starting point will be with the locking hook and the door open with the routeman filling the machine. To begin the close cycle, the routeman swings the door such that it is in close proximity to the main chamber of the machine. This action closes a feedback switch, S3, which sends a signal to the control circuit which turns the motor on. S3 is a plunger type switch, located in the main chamber of the machine such that the door plunges the switch when the door closes. The motor is connected to a multifunction cam wheel which, in turn, is connected to a slotted link, which, in turn, is connected to the spring loaded locking hook. The starting of the motor begins to rotate the locking hook. The locking hook “hooks” a u-bolt, or headed bolt, which is attached to the main chamber of the vending machine. The locking hook is shaped such that it draws the u-bolt in as it rotates, bringing the door closer to the main chamber. The locking hook is provided with six teeth which are engaged by a ratchet mechanism as the hook rotates. This continues until the door gasket between the door and the main chamber is compressed, and two additional feedback switches, S1 and S2 close. These switches close due to actuation by two cam surfaces on the multi function wheel. In this condition, the machine is completely sealed and locked. The ratchet mechanism is seated behind the last locking hook tooth, which is held solidly in place by a loaded extension spring between the locking hook and the main housing.
When the routeman wants to gain access to the inside of the machine, an electronic key is needed. Each electronic key is provided with a unique electronic serial number and a unique password. Each password is unique to each machine, so a plurality of passwords are stored in each key. The routeman places the electronic key on the key reader and it is read by the control circuit. The control circuit then decodes the key number, which is encrypted, and checks it against its internal database. If the key number is in the data base, the control circuit then electronically reads the password assigned to that machine. If the passwords match, the key is deemed valid. The password is then changed for the next access, and the new password is loaded into the key and is remembered in nonvolatile memory in the control circuit.
The motor is then turned on, which rotates the multifunction wheel. One of cams on the wheel engage a ratchet release lever, which pushes the ratchet off of the last tooth of the locking hook, causing the locking hook to pop open, as the loaded locking hook extension spring brings the locking hook open. This causes the vending machine door to open slightly. The wheel continues to rotate until feedback switch S1 opens. In this position, the locking hook is completely free to rotate allowing the routeman to open the vending machine door fully. S3 opens when the door opens and the motor again begins to rotate the multifunction wheel. The cam surface that was engaging the ratchet release lever travels past the lever, which releases the ratchet. Another cam surface on the multifunction wheel then pushes the ratchet down to engage the first tooth of the locking hook. The wheel continues to rotate until feedback switch S2 opens. At this time, the ratchet is engaged into the locking hook, such that if the door was closed, the u-bolt, or headed bolt, would hit the locking hook. The link that connects the multifunction wheel to the locking hook is provided with a slot on the wheel end. This slot allows the locking hook to advance before the motor turns on. If the u-bolt, or headed bolt, hits the locking hook it will cause it to rotate slightly, advancing the ratchet to the second tooth. At that time, the follower attached to the wheel travels down the slot in the link. The harder the door was closed, the further the locking hook would rotate, advancing the ratchet further. This feature is very important, since it allows latching of the door without electricity. When the motor turns on (due to S3 being plunged), the follower, attached to the multifunction wheel, first travels to the end of the slot on the link. The follower then pulls the link, which rotates the locking hook about the locking hook fulcrum to close and seal the door. If power was lost during a vending machine fill operation and the routeman slammed the door shut, the controller would, upon power up, see that S3 was closed and S1 and S2 were both open. This condition would be a vending machine with the door closed and the multifunction wheel in a position where the locking hook was not fully drawn closed. As such, the controller would automatically turn on the motor to advance the wheel until S1 and S2 were closed.
Turning first to
This u-bolt 35 could be substituted for a headed bolt and the locking hook 4 could be substituted for a claw shaped device which would grab the headed bolt around the head and pull it in.
Turning now to
The gear motor 1 is attached to mounting plate 11 by motor mount screws 13A,B,C,D. Mounting plate 11 has a corresponding mounting plate (not shown) on the inside of locking hook 4. The two mounting plates 11 are further held together by assembly screws 12A,B,D,E.
Turning now to
As link 5 pulls on locking hook 4, causing it to rotate, spring 14 begins to stretch and charge (increasing its potential energy). Locking hook spring 14 is mounted on one end to mounting plate 11 with screw 16, and on the other end to locking hook 4 with screw 15. This spring is used with the release operation described in FIG. 6.
Turning now to
Illustrated in
Turning to
Turning now to
The multifunction wheel 25 is additionally provided with release lever cam surface 26 which incorporates ascending surface 26A. As wheel 25 rotates, it brings ascending ratchet release cam surface 26A into contact with ratchet release lever 20 at surface 20A. When ratchet release cam surface 26A hits ratchet release lever 20 it causes it to rotate clockwise about screw and bushing assembly 38. As the release lever 20 rotates, integral surface 20B pushes on ratchet assembly 37 at ratchet spring holder 19 causing it to move in the upward direction. It is now able to move in this direction because cam surface 36 is now past the descending surface 36A which allows the ratchet assembly to move up. The ratchet assembly 37 moves up until the end of its ratchet surface 37B is clear of the last locking tooth 33B on the locking hook 4. Now, the locking hook is released and it is able to rotate freely about locking hook fulcrum 10, and charged spring 18 pulls it in the counterclockwise direction until the latch hook is fully open.
When the microprocessor based control circuit 40 reads an I-button through the user credential input system 42 it first decrypts the serial number of the key. The control circuit then checks the non-volatile memory to see if that key has access to the lock. If that key is in memory, it then reads and decrypts the password from the key. If the password matches the password stored in non volatile memory, corresponding to the key number, then the key is deemed valid.
A new password is generated, encrypted and stored in the key and in nonvolatile memory in the control board.
At this point, the optional solenoid driven latch 44 is opened. This latch is used in a different area of the door as the present invention to provide a more secure lock. The solenoid plunger is a simple bolt mounted inside a solenoid that engages a hole in the main chamber of the vending machine. The gear motor 3 is then energized to open the lock. Complete electrical details on a lock open and close cycle are described below under FIG. 8. Finally, the vending machine access is stored in nonvolatile memory. The entire history of accesses can be accessed through the user information output system 45. This output system could employ another Dallas semiconductor I-button, a laptop computer, a palm pilot etc. This system has the ability to read the prior accesses along with the date and time.
Turning now to the timing diagram in FIG. 8. This diagram illustrates the states of the feedback switches 21,22,41 and the locking hook 4 with respect to the state of the system electronics and the vending machine.
Again, for purposes of this illustration, the starting point will be with the latch and the door open, with the routeman filling the machine, time event 50. In this state, motor 3 is off, feedback switches 1,2, and 3 (21,22,41) are open and the locking hook 4 has the ratchet 37 on tooth 1 (28). In this state the microprocessor is waiting for the vending machine door to be closed, which will close switch 3 (41). This event occurs at time 51 at event 56. When the switch closes, the control circuit turns on the motor 3, to advance the multifunction wheel 25 which moves link 5, which rotates locking hook 4 as fully described above. The motor continues to run until the locking hook advances past teeth 2,3,4,5, and 6 (28,29,30,31,32,33) (events 57A,B,C,D,E) and switches 1 (21) and 2 (22) close, events 58A, 58B, time 52. In this state, the vending machine door is fully closed, the door is sealed shut, and the microprocessor is waiting for a user credential to be shown and validated, which occurs at time 53. After the microprocessor validates the credential, the control circuit 40 again turns on the motor 3. Very soon after the motor is turned on, the ratchet 37 is pulled off the locking hook 4 and the locking hook 4 is released at event 59. The motor 3 remains energized until switch 1 (21) opens, event 60, time 54. In this state, the microprocessor is waiting for the vending machine door to be pulled open. The locking hook 4 is completely free, as the ratchet 37 is pulled completely out of the way of all of the hook's teeth (28,29,30,31,21,33). When the door is pulled open, switch 3 (41) is opened, event 61, time 55. At this time, the control circuit 40 turns on the motor 3 which causes surface 36B to push the ratchet back down onto tooth 1 (28), event 62. The motor 3 stays on until switch 2 (22) opens, event 63, time 49. This sequence then repeats itself.
The present application claims benefit to provisional U.S. patent application Ser. No. 60/341,407 entitled “Electromechanical Locking Mechanism”, filed Dec. 14, 2001. The entire disclosure of this application No. 60/341,407 is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3942828 | Bourrie et al. | Mar 1976 | A |
4258945 | Pouget | Mar 1981 | A |
4268076 | Itoi | May 1981 | A |
4613176 | Kelly | Sep 1986 | A |
4667990 | Quantz | May 1987 | A |
4796932 | Tame | Jan 1989 | A |
4978153 | Hirsch et al. | Dec 1990 | A |
5007261 | Quantz | Apr 1991 | A |
5148691 | Wallden | Sep 1992 | A |
5575515 | Iwamoto et al. | Nov 1996 | A |
5639130 | Rogers et al. | Jun 1997 | A |
6036241 | Ostdiek et al. | Mar 2000 | A |
6068305 | Myers et al. | May 2000 | A |
6076868 | Roger et al. | Jun 2000 | A |
6152498 | Lindqvist | Nov 2000 | A |
6216980 | Baudu et al. | Apr 2001 | B1 |
6485071 | Schwaiger | Nov 2002 | B2 |
6684671 | Beylotte et al. | Feb 2004 | B2 |
20020060457 | Roatis et al. | May 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030127866 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60341407 | Dec 2001 | US |