The following generally relates to switching devices. More particularly, it is directed towards electromechanical switches such as micro-machined electromechanical relays. However, other types of switches are also contemplated.
A relay generally is a switch that opens and closes under control of an electrical circuit. Traditional relays typically employ an electromagnet that opens or closes one or more sets of contacts. When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned to its resting position. The contacts within a relay may be manufactured as normally-open, normally-closed, or change-over (or dual throw) contacts.
Microelectromechanical Systems (MEMS) technology has been leveraged to render micro-machined relays with micrometer size mechanical structures. Such relays can range in size from a micrometer to a millimeter. MEMS based relays have become integral components in technologies involving satellites, aircraft and automobiles and are used in applications such as radar systems for collision avoidance, airborne early warning, tactical radars, and phased array systems.
In many instances, it is difficult to manufacture a micro-machined relay without having one or more actuation electrodes create a capacitive short for high frequency RF signals. In such instances, nearby electrodes drain power, even when they are not touching. Thus, there is a need for improved micro-machined relays that mitigate creation of capacitive shorts with the actuation electrodes.
In one aspect, an electromechanical switching device is illustrated. The electromechanical switching device includes a relay with at least one first conductive portion, at least one second conductive portion, and at least one actuation component that moves the at least one first conductive portion and the at least one second conductive portion into and out of conductive contact. The at least one first conductive portion includes a conductive stationary end coupled to a substrate and a conductive free-floating end. The at least one actuation component includes an actuation stationary end coupled to the substrate and an actuation free-floating end. The actuation free-floating end, when the at least one actuation component is not energized, curls, which curls the conductive free-floating end into or out of conductive contact with the at least one second conductive portion.
As depicted, the relay is normally open. However, the relay can be fabricated as a normally closed switch (as described in connection with
The switch mechanism is formed from a first electrode 10 and a second electrode 12. The switch is closed when the first and the second electrodes 10 and 12 are in conductive contact, and the switch is open otherwise. As depicted, at least a portion 14 of the first electrode 10 is coupled to a substrate 16, while another portion 18 of the first electrode 10 is free-floating. The second electrode 12 typically is formed within and/or on the substrate 16. The substrate 16 can be formed from various materials such as, for example, silicon (Si), gallium arsenide (GaAs), Germanium (Ge), ceramic (e.g., thick-film, thin-film alumina, low-temperature co-fired ceramic, etc.), etc., with or without other components).
The first electrode 10 is associated with an input (not shown) of the relay that is sourced with a signal such as an analog and/or digital voltage, an analog and/or digital current, power, a radio frequency (RF) signal, etc. When the relay is in an “off,” “open,” “not activated,” “not energized,” etc. state, the first electrode 10 is separated from the second electrode 12 such that the signal is not conveyed from the first electrode 10 to the second electrode 12. In an “on,” “closed,” “activated,” “energized,” etc. state, the first electrode 10 and the second electrode 12 are in conductive contact and the signal is conveyed from the first electrode 10 to the second electrode 12. The signal can then be distributed from the relay via the second electrode 12 through an output (not shown) of the relay.
In one instance, the first electrode 10 is a spring cantilever or the like that curls and/or moves away from the second electrode 12 when in the “off” state. When in the “on” state, the spring cantilever uncurls or substantially straightens and moves into conductive contact with the second electrode 12. The curling of the first electrode 10 is at least partially due to internal stresses that are built into the first electrode 10 during fabrication. When the first electrode 10 curls away from the second electrode 12, the capacitance between the first electrode 10 and the second electrode 12 becomes relatively small, which minimizes parasitic signal transmission in the “off” state. In the “on” state, the first electrode 10 is pulled towards and into physical and/or capacitive contact with the second electrode 12, which closes the relay for signal transmission.
In some instances, one or more members 20 are formed within the second electrode 12 of the switch to facilitate transmission of the signal when the switch is closed. The member 20 can be a “bump” of the same material or a different material that is incorporated into or onto the second electrode 12 to improve contact. Contact can be additionally or alternatively improved by applying a passivating material that resists oxidation to the surfaces of the second electrode 12 and/or the “bump.” Alternatively or additionally, the member 20 can be incorporated into or onto the first electrode 10 such that it comes into conductive contact with the second electrode 12 when the relay is energized. The conductive contact between the first and second electrodes 10 and 12 can be metal-to-metal contact and/or capacitive coupling due to the close proximity and area overlap of the first and second electrodes 10 and 12.
The actuation mechanism includes at least one actuation spring 22, each with a corresponding actuation electrode 24. For explanatory purposes, two actuation springs 22 and two corresponding actuation electrodes 24 are illustrated. However, in other instances, more than two actuation springs 22 and/or more than two actuation electrodes 24 are used. As depicted, each actuation spring 22 may be formed on the substrate 16 such that a portion 26 is coupled to the substrate 16 and another portion 28 is free floating. Each actuation spring 22 may be formed within and/or on the substrate 16. As depicted, each actuation electrode 24 is tapered. However, this configuration is not limiting and the actuation electrodes 24 can be variously shaped. For example, in other embodiments plain actuation electrodes underneath ground strips can be used instead of the illustrated tapered electrodes positioned aside the ground strips.
The actuation electrode 24 is optionally associated with an interconnect 30. When energized, the free-flowing portion 28 of each actuation spring 22 is drawn to the associated actuation electrode 24. Such drawing may include uncurling of the free-flowing portion 28. In many instances, the free-flowing portion 28 is electrostatically drawn to the actuation electrode 24. When not activated, the free-flowing portion 28 of each actuation spring 22 curls away from the associated actuation electrode 24. The curling of each actuation spring 22 is at least partially due to internal stresses that are built into each actuation spring 22 during fabrication.
In the illustrated aspect, the switch mechanism is separated and/or substantially isolated from the actuation mechanism. One benefit of such configuration is that it can facilitate mitigating the formation of a capacitive short through the actuation mechanism. However, at least a portion of the actuation spring 22 is coupled to the first electrode 10 of the switch via a mechanical coupling 32. For instance and as depicted, the free-floating portions 18 and 28 of the first electrode 10 and the actuation spring 22, respectively, can be coupled via the coupling 32. Such coupling can extend to the non-free floating portions of the first electrode 10 and/or the actuation spring 22. In one instance, the free-floating portions 18 and 28 of the first electrode 10 and the actuation spring 22 are coupled mechanically through a dielectric tether. However, it is to be appreciated that other coupling techniques are also contemplated. For instance, rather than thin strips as shown, the tethers can take the form of an extended dielectric sheet. In another instance, the tethers can be a laminate. Staples, or other types of anchors, can be formed on the tethers to help hold them in place and resist de-lamination.
Through the coupling 32, the free-floating portion 18 of the electrode 10 is slaved such that it moves in substantial unison with the free-floating portion 28 of the actuation spring 22. Thus, when the free-floating portion 28 of the actuation spring 22 curls, the free-floating portion 18 of the first electrode 10 curls in substantial unison with it, and when the free-floating portion 28 of the actuation spring 22 uncurls, or substantially straightens, the free-floating portion 18 of the first electrode 10 uncurls, or substantially straightens with it. The relay may operate as a simple on-off device, snapping down at a specified voltage. In this configuration, each actuation spring 22 may also serve as a (AC) ground surrounding the line carrying the signal. If desired, the relay can be configured to produce continuous actuation. In this type of device, variable coupling can be achieved, making the relay into a variable attenuator.
Chemical mechanical polishing (CMP) or other techniques can be used to flatten a surface containing the first electrode 10 and/or the spring 22 prior to fabrication. This facilitates reliability and/or performance issues that can develop if the first electrode 10 and/or the spring 22 are fabricated over excessive topography. Resistive losses can be reduced by utilizing spring alloys with high conductance, or by adding metal to increase the conductance. To lower-the actuation voltage, alloys can be selected with low modulus and the dimensions can be modified to lower the spring constant. Dry release, such as using XeF2, can be utilized in order to release soft springs that would be damaged by surface tension forces, or succumb to stiction during drying. The dielectric properties of the materials around the released and unreleased portions of the device can be designed to produce controlled impedances along the device in its states of operation.
One difference between the embodiments illustrated in
When the first electrode 10 uncurls or straightens, the capacitance between the first electrode 10 and the second electrode 12 is relatively low, which minimizes parasitic signal transmission in the “off” state. In the “on” state, the first electrode 10 curls toward the second electrode 12 and physical and/or capacitive coupling between the first and second electrodes 10 and 12 facilitates transmission of the signal.
The flap 48 includes the switch mechanism that is separated and/or substantially isolated from an actuation mechanism. The switch mechanism includes a conductive member 50, which forms a metal-to-metal and/or capacitive coupling with both portions 42 and 44 of the strip 38 when closing the gap 46. The actuation mechanism includes at least one actuation member 52, although two actuation members 52 are illustrated. The at least one actuation member 52 is coupled to the conductive member 50 via a coupling 54 such that the conductive member 50 moves in substantial unison with the actuation member 52. The coupling 54 can be a dielectric tether, an extended dielectric sheet, a lamination, and/or other known connecting devices. Each actuation member 52 includes a stationary portion 56 that is mechanically coupled to and electrically isolated from one of the strips 36 and 40 of the waveguide 34. With two members 52, as shown, such coupling can be on the same side of the waveguide 34 relative to the gap 46. However, in other instance, the stationary couplings 52 can reside on opposite sides of the gap 46. Each actuation member 52 further includes a spring portion 58 that curls when not energized and uncurls when energized. An example of an energizing source is illustrated at 60.
When the relay is in an “off” state, or not energized, the actuation member 52 curls away from the waveguide 34 via the spring portion 58, which moves the conductive member 50 out of conductive contact with the strip 38 such that the signal is not transmitted through the relay. When the relay is in an “on” state, or energized, the actuation member 52 uncurls and moves the conductive member 50 into conductive contact with the portions 42 and 44 such that the signal is transmitted through the relay over the strip 38. As noted above, such curling is at least partially due to internal stresses that are created during fabrication. At least one of the strips 36-40, the member 50, the actuation member 52, the stationary portion 56, and the spring portion 58 can be copper and/or coated with copper, gold or other metal with low electrical resistance.
It is to be appreciated that the above described actuation system can also be used in combination with
It is to be understood that the examples illustrated herein are not limiting. Thus, although the illustrated relays only include a single signal carrier, other instances can include more than one signal carrier, including M signal carriers or switches, wherein M is an integer equal to or greater than one. In such instances, similar and/or different signals can be transmitted through the one or more switches. Still other instances may use one or more than two actuating mechanisms. Moreover, the relative position of the switch mechanism and the actuation mechanism can vary. As shown in the figures, the signal carrying electrode resides between two actuation springs. However, the signal carrying electrode(s) can be positioned on the outside of one of the actuation spring(s) or a single actuation spring may reside between two signal carrying electrodes.
It will be appreciated that variations of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5463233 | Norling | Oct 1995 | A |
6057520 | Goodwin-Johansson | May 2000 | A |
6127908 | Bozler et al. | Oct 2000 | A |
6191671 | Schlaak et al. | Feb 2001 | B1 |
6229683 | Goodwin-Johansson | May 2001 | B1 |
6633212 | Ruan et al. | Oct 2003 | B1 |
6731492 | Goodwin-Johansson | May 2004 | B2 |
7053737 | Schwartz et al. | May 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070126536 A1 | Jun 2007 | US |