This invention relates generally to actuators and corresponding methods and systems for controlling such actuators, and in particular, to actuators providing independent lift and timing control with minimum energy consumption.
Variable valve actuation (VVA) systems are used to actively control the timing and lift of engine valves to achieve improvements in engine performance, fuel economy, emissions, and other characteristics. Depending on the means of the control or the actuator, VVA systems are classified as mechanical, electrohydraulic, and electromechanical (sometimes called electromagnetic). Depending on the extent of the control, they are classified as variable valve-lift and timing, variable valve-timing, and variable valve-lift. They are also classified as cam-based or indirect acting and camless or direct acting. In the case of a cam-based system, the traditional engine cam system is kept and modified somewhat to indirectly adjust valve timing and/or lift. In a camless system, the traditional engine cam system is completely replaced with electrohydraulic or electromechanical actuators that directly drive individual engine valves. All current production automotive variable valve systems are cam-based, although camless systems will offer broader controllability, such as individual valve control and cylinder or valve deactivation, and thus better fuel economy.
The most prevailing design of an electromechanical VVA (or EMVVA) actuator includes an armature moving longitudinally between first and second electromagnets, a rod connected with the armature and an engine valve, and a pair of actuation springs attached to the rod and urging or centering the moving mass to a zero spring force or neutral position when the armature is not latched on either of the electromagnets. The engine valve is kept to closed and open positions when the armature is latched to the first and second electromagnets, respectively. For a simple, full-lift valve actuation, this spring-mass pendulum system is energy efficient, with the springs storing and releasing potential energy and the moving mass accumulating and releasing kinetic energy.
The prevailing EMVVA design does have several problems or potential problems. One of them is its power-off state. When engine power is off, the net spring force of the two actuation springs keeps the engine valve half open and the armature at the middle point between the two electromagnets. In certain vehicle regulations, it is required to keep engine valves closed at power-off. Also, to initialize an EMVVA actuator at the start of power-on, great effort and a large amount electrical current are spent to pull the armature from the middle point to either of the two electromagnets because of the nonlinear nature of the electromagnetic force. Therefore, it is desirable to keep the engine valve at the closed position and the armature near the first electromagnet.
With its fixed placement of the electromagnets and the actuation springs and nonlinear magnetic forces, prevailing EMVVA actuators also have trouble actuating an engine valve with a short stroke or lift, which is generally desirable and in some cases necessary for low load and idle engine operations. Some prevailing EMVVA actuators may perform short-lift actuation, but at great expense of electrical energy sustaining a large electromagnetic force through a substantial air gap to counter the spring centering force. This additional electrical energy further stretches the limit of a vehicle electrical system, especially during low load and idle operations when the vehicle alternator or electrical generator is the least efficient.
Disclosed in U.S. Pat. No. 5,996,539, assigned to FEV Motorentechnik GmbH & Co KG, is an EMVVA actuator including an adjusting device to vary the valve strokes. The adjusting device supports and controls the displacement of a base of the opener spring, thus controlling the pre-stress of the two actuation springs and the neutral position of the armature. At the least and most pre-stressed states of the actuation springs, the engine valve operates at partial and normal strokes, respectively. The design has the potential to resolve the valve stroke variability issue associated with most EMVVA designs. However, it fails to provide a solution to meet the need to keep the engine valve closed at power-off , and it also entails an additional hydraulically-operated-and-controlled locking mechanism, which incurs added complexity and reliability concern, to stabilize the adjusting device for partial stoke operations.
Briefly stated, in one aspect of the invention, one preferred embodiment of an electromechanical actuator comprises a housing, first and second electromagnets rigidly disposed in the housing and separated from each other by an armature chamber, an armature disposed in the armature chamber and movable between the first and second electromagnets, an armature rod rigidly connected with the armature and operably connected with a load, at least one first actuation spring biasing the armature in a first direction, at least one second actuation spring biasing the armature in a second direction, and one fluid-operated spring controller capable of controlling the position of the first-direction end of the at least one second actuation spring.
In operation, the actuation springs drive the armature and the load through pendulum motions between the first and second electromagnets, which in turn latch, over desired periods of time, and release the armature. The spring controller allows the actuation springs at their least compressed state and the engine valve closed when power is off or when the control fluid pressure is below a certain level or threshold. The spring controller may also be adjusted, with a low or moderate control fluid pressure, to allow the engine valve to operate with a partial lift.
In another embodiment, the spring controller allows the engine valve to operate with a small lift when the control fluid pressure is below a certain level or threshold. In still another embodiment, the spring controller includes a damping mechanism, without too much more complexity, to stabilize its operation.
The present invention provides significant advantages over the prevailing EMVVA actuators and their control. For example, it can effectively close the engine valve at power-off to meet certain vehicle regulations. The closed engine valve is also a good start-up point for the next power-on procedure or initialization. The invention also provides means to efficiently and effectively operate engine valves with a small lift. The present invention thus provides, with one mechanism, at least three significant functions: a closed engine valve at power-off, easy start-up, and partial or variable stroke. The present invention also provides partial stroke operation stability without too much more complexity.
The present invention, together with further objects and advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Referring now to
The actuator 100 further includes first and second actuation springs 42 and 44, concentrically wrapped around the engine valve stem 24 and the armature rod 40, respectively. The first actuation spring 42 is supported by a first spring retainer 54 and the cylinder head 50 at its first- and second-direction ends, respectively. The second actuation spring 44 is supported by a third spring retainer 58 and a second spring retainer 56 at its first- and second-direction ends, respectively. The first and second spring retainers 54 and 56 are fixed on the engine valve stem 24 and the armature rod 40, respectively, whereas the third spring retainer 58 is fixed on and thus moves with the second-direction end of the spring controller 70.
The first and second actuation springs are preferably substantially identical or symmetric in major geometrical, physical parameters, such as stiffness and preload to have an efficient pendulum system. They may be purposely designed to be somewhat asymmetric to achieve asymmetric needs for engine valve opening and closing, which, for example, experience dissimilar frictional forces and need different seating or slow-down strategies. For simplicity, the spring symmetry is assumed in many parts of the specification of this application, which does not however exclude the applicability of the embodiments and teachings of this invention to situations where asymmetric springs are more desirable.
The spring retainers 54 and 56 are illustrated to be of the shape generally used in current production engines. They do not have to be that way. In fact, when possible and practical, they may be combined into a single mechanical piece.
The spring controller 70 partitions the spring-controller cylinder 68 into spring-controller first and second chambers 72 and 74. The first chamber 72 is fed with a working fluid through a spring-controller port 60 and from a fluid supply at a pressure Psp. The fluid supply Psp is switched on and off by a spring-controller on-off valve 62. The second chamber is generally not pressurized and is exposed to either atmosphere or a fluid return line to the tank of the working fluid (not shown). Therefore there is negligible force on a spring-controller second surface 78. The fluid pressure force on a spring-controller first surface 76 balances the spring force on the third spring retainer 58 from the second actuation spring 44, resulting in the longitudinal position of the spring controller 70 and thus that of the third spring retainer 58, which in turn controls the neutral position of the armature and the engine valve. A neutral position is defined as a steady-state position only under spring forces, without electromagnetic forces and contact forces at electromagnets and the engine valve seat and generally ignoring gravitational and frictional forces. At a neutral state or position, the two spring forces are equal in magnitude and opposite in direction, and the net spring force is thus equal to zero. The position or travel of the armature and engine valve assembly is also limited in the first direction when the engine valve head 22 comes in contact with the engine valve seat 26 and in the second direction when the armature 38 comes in contact with the second electromagnet 36. The position or travel of the spring controller 70 is limited by spring-controller cylinder first and second surfaces 92 and 94 in the first and second directions, respectively.
The spring controller 70 can be alternatively designed without the flange feature that gives off, or is characterized in the form of, the spring-controller second surface 78 shown in
At power-off, the spring-controller on-off valve 62 is at its default or open position, and the fluid supply pressure Psp is generally at the atmosphere pressure or zero gage pressure. The spring controller 70 is thus at its farthest position in the first direction, with its first surface 76 butting against the spring-controller cylinder first surface 92, and the actuation springs 42 and 44 are at their least compressed states. The actuator 100 is so geometrically and physically designed such that the engine valve 20 is fully closed with a finite seating or contact force, if desired, and the armature 38 is substantially approximate, depending on the lash, to the first electromagnet 34. The armature and engine valve assembly are not exactly in the neutral position if the seating force is not zero.
Because of thermal expansion, wear and elasticity in an engine valve mechanism, the longitudinal dimension stack-up is not exact, and lash adjustment has to be considered. When the armature 38 is latched to the first electromagnet 34, they may not necessarily be in real physical or metal-to-metal contact. For simplicity of discussion and illustration, the clearance between the armature 38 and the electromagnet 34 and its variation, when they are latched, are to be ignored or de-emphasized. But that does not exclude the general applicability of the embodiments and teachings of this invention to situations with substantial lash.
Symbolically in
Xsp=0,
Xev=0,
Xar1=0, and
Xar2=Xspmax−Xar1=Xspmax,
where Xspmax is the maximum spring-controller displacement.
The actuator 100 falls into the power-off state soon after the engine power is turned off, either intentionally or by accident, keeping the engine valve closed as required in some vehicle regulations. From this power-off state, it is also easy to initialize the actuator 100 at the engine start-up, without spending too much energy (see the following discussion).
At the power-off state as shown in
Also at the start-up, the fluid supply builds up its pressure Psp, and the pressure force starts pushing the spring controller 70 in the second direction until it is against and limited by the spring-controller cylinder second surface 94, with Xsp=Xspmax. However, this pressure build-up and the subsequent spring controller displacement are much slower than the action to energize the first electromagnet 34 and latch the armature 38, and the armature-and-engine valve assembly stay securely latched as shown in
For the normal, full or maximum lift operation, the spring controller 70 remains in the position as shown in
The actuator 100 is also able to operate at a small lift. The spring controller 70 illustrated in
It is also possible to use a lock-up mechanism, such as a fluid actuated lock pin (not shown in
This small lift operation operates differently from that with the full lift, and the engine valve opens and closes under the net spring force and the electromagnetic force, respectively, instead of under generally symmetric, pendulum dynamics. The armature 38 is latched at the closed position and balanced at the open position by the first electromagnet 34 and the actuation springs 42 and 44, respectively, instead of by the first and second electromagnets 34 and 36, respectively. In fact, the second electromagnet 36 may not be involved at all. This asymmetric operation is, in theory, not energy efficient, but it is, in absolute terms, still efficient because of its much reduced lift. In addition, the balance at the engine valve open position, a neutral position, is achieved by the actuation springs 42 and 44, without consuming electrical energy. With a prevailing EMVVA actuator, a substantial amount of electrical energy has to be consumed to counter a large spring return force at this position, which is not a neutral position in a prevailing design.
During the operation, the second actuation spring 44 does change its level of compression and offers a varying force to the spring controller 70, which makes it necessary to incorporate design considerations to damp out oscillatory displacement for the spring controller 70.
It is generally preferred for all VVA actuators 100 in an engine to use a single fluid supply. When the system changes its supply pressure Psp from a high pressure to a lower pressure for a small lift operation or vice versa, timing of the system pressure change may not be ideal for individual actuators 100. The system control may purposely closes off an individual spring-controller on-off valve 62 by energizing its solenoid to momentarily isolate its associated spring controller 70. Otherwise, the spring-controller on-off valve 62 may be eliminated from the system to simplify.
The spring controller 70 and its associated fluid actuation design illustrated in
The embodiment in
The embodiment in
The design variations of the spring controller mechanisms and the fluid supply schemes illustrated in
When the spring-controller first surface 76b is in contact with the spring-controller cylinder first surface 92b (as shown in
Refer now to
In all the above descriptions, the first and second actuation springs 42 and 44 are each identified or illustrated, for convenience, as a single spring. When needed for strength, durability or packaging, however each or any one of the first and second actuation springs 42 and 44 may include a combination of two or more springs. In the case of mechanical compression springs, they can be nested concentrically, for example. The spring subsystem may also include a single mechanical spring (not shown) that can take both tension and compression. The spring subsystem may also include a combination of pneumatic and mechanical springs, or even two pneumatic springs.
Also in some illustrations and descriptions, the fluid medium may be assumed or implied to be hydraulic or in liquid form. In most cases, the same concepts can be applied, with proper scaling, to pneumatic actuators and systems. As such, the term “fluid” as used herein is meant to include both liquids and gases. Also, in many illustrations and descriptions so far, the application of the actuator 100 or 100b or 100c is defaulted to be in engine valve control, and it is not limited so. The actuator 100 or 100b or 100c can be applied to other situations where a fast and/or energy efficient control of the motion is needed.
Although the present invention has been described with reference to the preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of this invention.
This application claims priority to Provisional U.S. Patent Application No. 60/765,012, file on Feb. 3, 2006, the entire content of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5156067 | Umeyama | Oct 1992 | A |
5996539 | Göbel | Dec 1999 | A |
20040060529 | Nan et al. | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070181087 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60765012 | Feb 2006 | US |