1. Field of the Invention
The present invention relates generally to electric power generating modules and more particularly, to an electromotive force (hereinafter referred to as ‘EMF’) generator having coils producing induced electromotive force by changing magnetic flux passing therethrough, and an electric power generating module using the EMF generator.
2. Description of the Related Art
Remote controls for television, air-conditioner, door plate of building, locking system of automobile, portable game machine and so on are extensively used by people in daily life. These remote controls are generally powered by battery. It usually happens that the battery is running out of power suddenly but new battery is not available for replacement, resulting in inconvenience to the user.
These remote controls are generally portable devices, which are usually moved and placed by user place to place, and some of which will be often carried by user and then shaken along with the user's body motion. In addition, some of these remote controls, such as remote joysticks of game machines, will be intensively or purposely shaken by the user when they are in use. In other words, user will unintentionally apply kinetic energy to the remote control. If the kinetic energy exerted on the remote control can be converted inside the remote control into electric power for being used by the remote control, money and energy can be saved and the situation of running out of battery can be avoided. On the other hand, most of the remote controls are used in a very short term each time, which may consume little electric power. The electric power converted from the kinetic energy produced by the user's shaking the remote control with a few seconds before the remote control is used may be enough to fulfill the requirement of the electric power that the remote control is needed for one-time use. That is, if the kinetic energy exerted on the remote control by the user can be effectively converted into electric power, the remote control may not need to be equipped with battery.
The present invention has been accomplished in view of the above-noted circumstances. It is therefore a primary objective of the present invention to provide an EMF generator and an electric power generating module using the EMF generator which can produce induced electromotive force when it is moved or shaken so as to make the electric power generating module produce electric power, thereby saving money and energy and enhancing the convenience of use of the portable device needing electric power for operation.
To achieve the above-mentioned objective, an electromotive force (EMF) generator provided by the present invention comprises a shell, at least one coil unit, a first stationary magnet, a second stationary magnet and a moveable magnet. The shell has two plates oppositely and spacedly arranged with each other, and a receiving space between the two plates. The coil unit is mounted to one of the plates of the shell. The first and second stationary magnets are fixedly disposed in the receiving space and have different magnetic pole. The second stationary magnet includes a first side and a second side opposite to the first side. The moveable magnet is provided with a magnetic pole opposite to that of the first stationary magnet and located in the receiving space. The moveable magnet is moveable between a first position adjacent to the first side of the second stationary magnet and a second position adjacent to the second side of the second stationary magnet along a circumference of the first stationary magnet across a space defined between the coil unit and the other one of the plates.
The electric power generating module provided by the present invention comprises the above-mentioned EMF generator and a circuit unit electrically connected with the coil unit of the EMF generator. The circuit unit includes an energy storing component.
As a result, when the EMF generator is moved or shaken, the moveable magnet will move along the circumference of the first stationary magnet and pass across the coil unit in such a way that the moveable magnet reciprocally moves between the first and second positions by means of the characteristic that the moveable magnet has a different magnetic pole from that of the second stationary magnet to result in a magnetically repellent force therebetween. Therefore, the magnetic flux passing through the coil unit changes all the time to produce induced electromotive force, making the coil unit generate electric current to be stored in the energy storing component. The electric power generating module can be built in a portable device, such as a remote control that enables the electric power generating module to produce electric power conveniently, such that the electric power produced by the electric power generating module can be used by the portable device, thereby saving money and energy and preventing the portable device from running out of power suddenly so as to enhance the convenience of use of the portable device.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
It is to be mentioned that same or similar parts disclosed in the preferred embodiments and the drawings, which will be detailedly described hereunder, are denoted with same reference numerals for the purpose of concise illustration of the present invention.
As shown in
Referring to
The shell 40 is made of a non-ferroelectric material, including but not limited to aluminum, fiber reinforced plastic and acrylic resin. The shell 40 is configured having two circular plates 42 oppositely and spacedly arranged with each other, an annular periphery plate 44 connected between the two circular plates 42, and a receiving space 46 defined by the circular plates 42 and the annular periphery plate 44.
The coil unit pair 50 is composed of two coil units 52. As same as the conventional coil unit, each coil unit 52 is composed of a magnetically conductive core 522 and a wire coil 524 wound around the core 522. The coil units 52 are respectively attached on the two plates 42 by adhesive, such as epoxy resin or synthetic resin, and aligned in a line with each other.
The magnets 60, 70 and 80 are circular permanent magnets. The magnetic pole of the moveable magnet 80 is different from that of the stationary magnet 60 and same as that of the stationary magnet 70. Specifically speaking, if the magnetic pole of the magnet 60 is ‘N pole’, the magnetic poles of the magnets 70 and 80 will be ‘S pole’ and vice versa. These magnets 60, 70 and 80 are disposed in the receiving space 46.
The magnets 60 and 70 are abutted with each other and fixedly mounted to the plates 42, such that the magnets 60 and 70 are stationary relative to the shell 40. The moveable magnet 80 is magnetically attracted on a circumference 62 of the first stationary magnet 60.
The circuit unit 30 is composed of a rectification circuit 32 and an energy storing component 34, which may be realized as a capacity or a rechargeable battery. Two terminals of each wire coil 524 are electrically connected with the circuit unit 30.
When the EMF generator 20 is moved or shaken, the moveable magnet 80 can move along the circumference 62 of the first stationary magnet 60 toward a first direction D1 or a second direction D2 as shown in
In other words, by means of moving or shaking the EMF generator 20 and the magnetically repellent force generated between the magnets 70 and 80, the moveable magnet 80 can reciprocally move between the first position P1 and the second position P2 across the space between the two coil units 52. By this way, an induced electromotive force will be produced due to the continuous change of magnetic flux passing through the coil units 52, resulting in that the coil units 52 produce electric current and the electricity energy will be stored in the energy storing component 34.
The electric power generating module 10 can be simply applied as a power generator. Alternatively, the electric power generating module 10 can be built in a portable device, such as a remote control, which will be generally carried by the user and/or moved or shaken by the user when it is operated, such that the EMF generator 20 will be often moved or shaken to make the electric power generating module 10 produce electric power that can be used by the portable device so as to prevent the portable device from running out of power. By means of the built-in electric power generating module 10, the electric power can be provided in a cost-saving manner and the convenience of use of the portable device can be enhanced.
In the first preferred embodiment, the thickness of the moveable magnet 80 is smaller than that of the first stationary magnet 60, as shown in
It'll be appreciated that the amount of the coil unit is not specially limited and the coil units are not limited to be face-to-face paired. In addition, the location of the coil unit is not limited to the first position P1, the second position P2 or the middle position P3 as long as the moveable magnet 80 can travel across the space between one of the circular plates 42 and each coil unit. That is, any design that allows each of the coil units to be arranged at a location corresponding to the traveling path of the moveable magnet 80 can be adopted in the present invention.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
101121156 | Jun 2012 | TW | national |