Electron accelerator for ultra-small resonant structures

Information

  • Patent Grant
  • 7656094
  • Patent Number
    7,656,094
  • Date Filed
    Friday, May 5, 2006
    18 years ago
  • Date Issued
    Tuesday, February 2, 2010
    14 years ago
Abstract
An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to a sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention is related to the following co-pending U.S. Patent applications which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference:

    • 1. U.S. patent application Ser. No. 11/238,991, entitled “Ultra-Small Resonating Charged Particle Beam Modulator,” filed Sep. 30, 2005;
    • 2. U.S. patent application Ser. No. 10/917,511, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” filed on Aug. 13, 2004;
    • 3. U.S. application Ser. No. 11/203,407, entitled “Method Of Patterning Ultra-Small Structures,” filed on Aug. 15, 2005;
    • 4. U.S. application Ser. No. 11/243,476, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave,” filed on Oct. 5, 2005;
    • 5. U.S. application Ser. No. 11/243,477, entitled “Electron beam induced resonance,” filed on Oct. 5, 2005;
    • 6. U.S. application Ser. No. 11/325,448, entitled “Selectable Frequency Light Emitter from Single Metal Layer,” filed Jan. 5, 2006;
    • 7. U.S. application Ser. No. 11/325,432, entitled, “Matrix Array Display,” filed Jan. 5, 2006;
    • 8. U.S. application Ser. No. 11/302,471, entitled “Coupled Nano-Resonating Energy Emitting Structures,” filed Dec. 14, 2005;
    • 9. U.S. application Ser. No. 11/325,571, entitled “Switching Micro-resonant Structures by Modulating a Beam of Charged Particles,” filed Jan. 5, 2006;
    • 10. U.S. application Ser. No. 11/325,534, entitled “Switching Microresonant Structures Using at Least One Director,” filed Jan. 5, 2006;
    • 11. U.S. application Ser. No. 11/350,812, entitled “Conductive Polymers for Electroplating,” filed Feb. 10, 2006;
    • 12. U.S. application Ser. No. 11/349,963, entitled “Method and Structure for Coupling Two Microcircuits,” filed Feb. 9, 2006;
    • 13. U.S. application Ser. No. 11/353,208, entitled “Electron Beam Induced Resonance,” filed Feb. 14, 2006; and
    • 14. U.S. application Ser. No. 11/400,280, entitled “Resonant Detector for Optical Signals,” filed Apr. 10, 2006.


FIELD OF DISCLOSURE

This relates in general to electron accelerators for resonant structures.


Introduction

We have previously described in the related applications identified above a number of different inventions involving novel ultra-small resonant structures and methods of making and utilizing them. In essence, the ultra-small resonant structures emit electromagnetic radiation at frequencies (including but not limited to visible light frequencies) not previously obtainable with characteristic structures nor by the operational principles described. In some of those applications of these ultra-small resonant structures, we identify electron beam induced resonance. In such embodiments, the electron beam passes proximate to an ultra-small resonant structure—sometimes a resonant cavity—causing the resonant structure to emit electromagnetic radiation; or in the reverse, incident electromagnetic radiation proximate the resonant structure causes physical effects on the proximate electron beam. As used herein, an ultra-small resonant structure can be any structure with a physical dimension less than the wavelength of microwave radiation, which (1) emits radiation (in the case of a transmitter) at a microwave frequency or higher when operationally coupled to a charge particle source or (2) resonates (in the case of a detector/receiver) in the presence of electromagnetic radiation at microwave frequencies or higher.


Thus, the resonant structures in some embodiments depend upon a coupled, proximate electron beam. We also have identified that the charge density and velocity of the electron beam can have some effects on the response returned by the resonant structure. For example, in some cases, the properties of the electron beam may affect the intensity of electromagnetic radiation. In other cases, it may affect the frequency of the emission.


As a general matter, electron beam accelerators are not new, but they are new in the context of the affect that beam acceleration can have on novel ultra-small resonant structures. By controlling the electron beam velocity, valuable characteristics of the ultra-small resonant structures can be accommodated.


Also, we have previously described in the related cases how the ultra-small resonant structures can be accommodated on integrated chips. One unfortunate side effect of such a placement can be the location of a relatively high-powered cathode on or near the integrated chip. For example, in some instances, a power source of 100s or 1000s eV will produce desirable resonance effects on the chip (such applications may—but need not—include intra-chip communications, inter-chip communications, visible light emission, other frequency emission, electromagnetic resonance detection, display operation, etc.) Putting such a power source on-chip is disadvantageous from the standpoint of its potential affect on the other chip components although it is highly advantageous for operation of the ultra-small resonant structures.


We have developed a system that allows the electrons to gain the benefit usually derived from high-powered electron sources, without actually placing a high-powered electron source on-chip.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a transmitter and detector employing ultra-small resonant structures and two alternative types of electron accelerators;



FIG. 2 is a timing diagram for the electron accelerator in the transmitter of FIG. 1;



FIG. 3 is a timing diagram for the electron accelerator in the receiver of FIG. 1; and



FIG. 4 is another alternative electron accelerator for use with ultra-small resonance structures.





PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

Transmitter 10 includes ultra-small resonant structures 12 that emit encoded light 15 when an electron beam 11 passes proximate to them. Such ultra-small resonant structures can be one or more of those described in U.S. patent application Ser. Nos. 11/238,991; 11/243,476; 11/243,477; 11/325,448; 11/325,432; 11/302,471; 11/325,571; 11/325,534; 11/349,963; and/or 11/353,208 (each of which is identified more particularly above). The resonant structures in the transmitter can be manufactured in accordance with any of U.S. application Ser. Nos. 10/917,511; 11/350,812; or 11/203,407 (each of which is identified more particularly above) or in other ways. Their sizes and dimensions can be selected in accordance with the principles described in those and the other above-identified applications and, for the sake of brevity, will not be repeated herein. The contents of the applications described above are assumed to be known to the reader.


The ultra-small resonant structures have one or more physical dimensions that can be smaller than the wavelength of the electromagnetic radiation emitted (in the case of FIG. 1, encoded light 15, but in other embodiments, the radiation can have microwave frequencies or higher). The ultra-small resonant structures operate under vacuum conditions. In such an environment, as the electron beam 11 passes proximate the resonant structures 12, it causes the resonant structures to resonate and emit the desired encoded light 15. The light 15 is encoded by the electron beam 11 via operation of the cathode 13 by the power switch 17 and data encoder 14.


In a simple case, the encoded light 15 can be encoded by the data encoder 14 by simple ON/OFF pulsing of the electron beam 11 by the cathode 13. In more sophisticated scenarios, the electron density may be employed to encode the light 15 by the data encoder 14 through controlled operation of the cathode 13.


In the transmitter 10, if an electron acceleration level normally developed under a 4000 eV power source (a number chosen solely for illustration, and could be any energy level whatsoever desired) is desired, the respective anodes connected to the Power Switch 17 at Positions A-H will each have a potential relative to the cathode of 1/n times the desired power level, where n is the number of anodes in the series. Any number of anodes can be used. In the case of FIG. 1, eight anodes are present. In the example identified above, the potential between each anode and the cathode 13 is 4000V/8=500V per anode.


The Power switch 13 then requires only a 500V potential relative to ground because each anode only requires 500V, which is vastly an advantageously lower potential on the chip than 4000V.


In the system without multiple anodes, a 500V potential on a single anode will not accelerate the electron beam 11 at nearly the same level as provided by the 4000V source. But, the system of FIG. 1 obtains the same level of acceleration as the 4000V using multiple anodes and careful selection of the anodes at the much lower 500V voltage. In operation, the anodes at Positions A-H turn off as the electron beam passes by, causing the electron beam to accelerate toward the next sequential anode. As shown in the timing diagram of FIG. 2, the power switch 17 controls the potential at each anode in Position A through Position H sequentially as the electron beam passes by the respective anodes. In FIG. 2, the y-axis represents the ON/OFF potential at the anode and the x-axis represents time. At the start, all of the anodes are in a “don't care” state represented by the hatched lines. “Don't care” means that the anodes can be on, off, or switching without material effect on the system. At a particular time, the Position A anode turns ON, as shown, while the remaining anodes remain in the “don't care” state. The ON state indicates a potential between the anode and the cathode 13, such that the electron beam 11 from the cathode 13 is accelerated toward the anode at Position A. Once the electron beam reaches at or near the anode at Position A, the Position A anode turns OFF, as shown in FIG. 2, and the Position B anode turns ON causing the electron beam passing Position A to further accelerate toward Position B. When it reaches at or near Position B, the Position B anode turns off and the Position C anode turns ON, a shown in FIG. 2. The process of turning sequential anodes ON continues, as shown in FIG. 2, as the electron beam reaches at or near each sequential anode position.


After passing Position H in the transmitter 10 of FIG. 1, the electron beam has accelerated to essentially the same level as it would have if only one high voltage anode had been present.


The anodes in transmitter 10 are turned ON and OFF as the electron beam reaches the respective anodes. One way (although not the only way) that the system can know when the electron beam is approaching the respective anodes is to provide controller 16 to sense when an induced current appears on the respective anode caused by the approaching electron beam. When the controller 16 senses a current at a particular threshold level in the anode at Position A, for example, it instructs the power switch 17 to switch the anode at Position A OFF and the anode at Position B ON, and so on, as shown in FIG. 2. The threshold can be chosen to essentially correspond with the approach (or imminent passing) of the electron beam at the particular anode being sensed. The power switch 17 can switch an anode OFF when the threshold is reached under the assumption that the electron beam has sufficiently accelerated to that anode and can now best be further accelerated by attraction to the next sequential anode.


After the electron beam has accelerated to each sequential anode 10, the accelerated electron beam 11 can then pass the resonant structures 12, causing them to emit the electromagnetic radiation encoded by the data encoder 14. The resonant structures 12/24 are shown generically and on only one side, but they may be any of the ultra-small resonant structure forms described in the above-identified applications and can be on both sides of the electron beam. Collector 18 can receive the electron beam and either use the power associated with it for on-chip power or take it to ground.


In the transmitter of FIG. 1, each anode is turned ON for the same length of time. Because the electron beam 11 is accelerating as it passes the respective anodes, the anodes 19 are spaced increasingly further apart only the path of the electron beam so the evenly timed ON states will coincide with the arriving electron beam. As can now be understood from that description, the distance between the anodes and the timing of the ON pulses can be varied. Thus, the Receiver 20 in FIG. 1 has a set of anodes 27 that are evenly spaced. In that embodiment, as the electron beam 25 from cathode 23 accelerates, the ON states of the anodes 27 controlled by controller 21 and invoked by power switch 22 at the Positions A-H will shorten as the electron beam approaches the resonant structures 24 (i.e., as the electron beam continues to accelerate). FIG. 3 shows an example timing diagram for the anode switching in the receiver 20 of FIG. 1. As in FIG. 2, the y-axis represents the ON/OFF state (hatched sections represent “don't care”) and the x-axis represents time.


In FIG. 3, as the electron beam starts out from cathode 23, it will take more time to reach the anode at Position A and thus the ON state is relatively long. As the electron beam accelerates to Position H, it has substantially increased its velocity such that the ON state for the anode at Position H is relatively short.


Other alternatives systems that incorporate different spacing aspects for the anodes and corresponding different timing aspects will now be apparent to the artisan after reviewing FIGS. 2 and 3. That is, various hybrids between the systems of FIGS. 2 and 3 can be envisioned.


To complete the description of the operation of FIG. 1, in the receiver 20, the electron beam passes the resonant structures 24, which have received the encoded light 15. The effect of the encoded light 15 on the resonant structures 24 causes the electron beam 25 to bend, which is detected by detector 26. In that way, the encoded data in the encoded light 15 is demodulated by detector 26.


To facilitate the acceleration of the electrons between the anodes 19, the electron beam should preferably be pulsed. In that way, one electron pulse can be accelerated to, sequentially, the first, second, third, etc. anodes (Positions A, B, C, etc) before the next pulse of electrons begins. The number of anodes that an earlier pulse of electrons must reach before a next pulse can start will, of course, depend on the influence that the re-energized earlier anodes have on the since-departed electron group. It is advantageous that the re-energizing of the anode at Position A, for example, as a subsequent electron pulse approaches it does not materially slow the earlier electron pulse that is at a later position in the anode stream.



FIG. 4 illustrates an alternative structure for the accelerator 40 that could substitute for the anodes 19 or the anodes 27. In FIG. 4, a cyclotron is shown in which the cathode 42 emits electrons into a spiral. A magnetic field in a line perpendicular to the plane of FIG. 4, combined with an alternative RF field provided by RF source 45 and electrodes 43 and 44, causes the electron beam from the cathode 42 to accelerate around the spiral. That is, if the polarity transitions between the electrodes 43 and 44 are evenly timed by source 45, then the electrons traveling around each consecutive “ring” of the spiral will travel a longer distance in the same amount of time (hence, their acceleration). When the electrons leave the spiral at position 46, they have accelerated substantially even using a relatively low power source.


The magnetic field in FIG. 4 may be advantageously shielded from other circuit components (for example, when the transmitter and/or receiver are on physically mounted on an IC having other electric components). With shielding, the influence of the magnetic field can be localized to the accelerator 40 without materially affecting other, unrelated elements.


While certain configurations of structures have been illustrated for the purposes of presenting the basic structures of the present invention, one of ordinary skill in the art will appreciate that other variations are possible which would still fall within the scope of the appended claims. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A transmitter, comprising: a cathode emitting electrons;two or more anodes arranged sequentially downstream of the electrons emitted by the cathode;a power source operationally associated with a power switch to provide power to selected ones of the two or more anodes based on positions of the electrons relative to the selected anodes;at least one ultra-small resonant structure downstream of the two or more anodes and located proximate the electron beam whereby the resonant structures emit electromagnetic radiation at least in part due to the passing proximate electron beam.
  • 2. A transmitter according to claim 1, wherein: the two or more anodes are physically spaced at generally evenly spaced.
  • 3. A transmitter according to claim 2, wherein: power switch switches power to anodes farther downstream of the cathode for shorter durations than for anodes nearer the cathode.
  • 4. A transmitter according to claim 1, further including: a controller to provide the power switch with a timing to turn power ON respectively to the two or more anodes.
  • 5. A transmitter according to claim 4, wherein the controller instructs the power switch to turn a respective one of the two or more anodes OFF when it senses a position of the electron beam relative to the one anode being turned OFF.
  • 6. A transmitter according to claim 5, wherein: generally when the controller instructs the power switch to turn said one of the two or more anodes OFF, the controller also instructs the power switch to turn a next one of the two or more anodes ON.
  • 7. A transmitter according to claim 4, wherein the controller instructs the power switch to sequentially turn the respective anodes ON when the electron beam generally approaches the respective anodes.
  • 8. A transmitter according to claim 4 wherein the controller provides the timing based on current flows detected in the anodes by the controller caused at least in part by the moving electron beam.
  • 9. A transmitter according to claim 8, wherein the controller senses current in each anode and instructs the power switch to sequentially turn the anodes ON when the controller senses that the passing electron beam has induced a threshold current in one or more of the anodes physically associated with the respective anodes being turned ON.
  • 10. A receiver to decode a signal from electromagnetic radiation, comprising: a cathode emitting electrons;two or more anodes arranged sequentially downstream of the electrons emitted by the cathode;a power source operationally associated with a power switch to provide power to selected ones of the two or more anodes based on positions of the electrons relative to the selected anodes;at least one ultra-small resonant structure downstream of the two or more anodes and located proximate the electron beam whereby the resonant structures couple the electromagnetic radiation and affect either the direction or speed of the electron beam based on a content of the signal.
  • 11. A receiver according to claim 10, wherein: the two or more anodes are physically spaced at generally evenly spaced.
  • 12. A receiver according to claim 11, wherein: power switch switches power to anodes farther downstream of the cathode for shorter durations than for anodes nearer the cathode.
  • 13. A receiver according to claim 10, further including: a controller to provide the power switch with a timing to turn power ON respectively to the two or more anodes.
  • 14. A receiver according to claim 13, wherein the controller instructs the power switch to turn a respective one of the two or more anodes OFF when it senses a position of the electron beam relative to the one anode being turned OFF.
  • 15. A receiver according to claim 14, wherein: generally when the controller instructs the power switch to turn said one of the two or more anodes OFF, the controller also instructs the power switch to turn a next one of the two or more anodes ON.
  • 16. A receiver according to claim 13, wherein the controller instructs the power switch to sequentially turn the respective anodes ON when the electron beam generally approaches the respective anodes.
  • 17. A receiver according to claim 13 wherein the controller provides the timing based on current flows detected in the anodes by the controller caused at least in part by the moving electron beam.
  • 18. A receiver according to claim 17, wherein the controller senses current in each anode and instructs the power switch to sequentially turn the anodes ON when the controller senses that the passing electron beam has induced a threshold current in one or more of the anodes physically associated with the respective anodes being turned ON.
  • 19. A method, comprising the steps of: providing a cathode to emit a pulse of electrons;directing the electrons past a sequence of anodes;powering the anodes in sequence as the pulse of electrons approaches the powered anodes;providing at least one ultra-small resonant structure;passing the pulse of electrons proximate the ultra-small resonant structure to couple energy between the pulse of electrons and the ultra-small resonant structure.
  • 20. A method according to claim 19, wherein the energy is coupled from the pulse of electrons to the ultra-small resonant structure.
  • 21. A method according to claim 20, wherein the energy is couple from the ultra-small resonant structure to the pulse of electrons.
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.

US Referenced Citations (315)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3297905 Rockwell et al. Jan 1967 A
3315117 Udelson Apr 1967 A
3387169 Farney Jun 1968 A
3543147 Kovarik Nov 1970 A
3546524 Stark Dec 1970 A
3560694 White Feb 1971 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4053845 Gould Oct 1977 A
4282436 Kapetanakos Aug 1981 A
4450554 Steensma et al. May 1984 A
4453108 Freeman, Jr. Jun 1984 A
4482779 Anderson Nov 1984 A
4528659 Jones, Jr. Jul 1985 A
4589107 Middleton et al. May 1986 A
4598397 Nelson et al. Jul 1986 A
4630262 Callens et al. Dec 1986 A
4652703 Lu et al. Mar 1987 A
4661783 Gover et al. Apr 1987 A
4704583 Gould Nov 1987 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740963 Eckley Apr 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4761059 Yeh et al. Aug 1988 A
4782485 Gollub Nov 1988 A
4789945 Niijima Dec 1988 A
4806859 Hetrick Feb 1989 A
4809271 Kondo et al. Feb 1989 A
4813040 Futato Mar 1989 A
4819228 Baran et al. Apr 1989 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4841538 Yanabu et al. Jun 1989 A
4864131 Rich et al. Sep 1989 A
4866704 Bergman Sep 1989 A
4866732 Carey et al. Sep 1989 A
4873715 Shibata Oct 1989 A
4887265 Felix Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4898022 Yumoto et al. Feb 1990 A
4912705 Paneth et al. Mar 1990 A
4932022 Keeney et al. Jun 1990 A
4981371 Gurak et al. Jan 1991 A
5023563 Harvey et al. Jun 1991 A
5036513 Greenblatt Jul 1991 A
5065425 Lecomte et al. Nov 1991 A
5113141 Swenson May 1992 A
5121385 Tominaga et al. Jun 1992 A
5127001 Steagall et al. Jun 1992 A
5128729 Alonas et al. Jul 1992 A
5130985 Kondo et al. Jul 1992 A
5150410 Bertrand Sep 1992 A
5155726 Spinney et al. Oct 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5187591 Guy et al. Feb 1993 A
5199918 Kumar Apr 1993 A
5214650 Renner et al. May 1993 A
5233623 Chang Aug 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5282197 Kreitzer Jan 1994 A
5283819 Glick et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5302240 Hori et al. Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5341374 Lewen et al. Aug 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5485277 Foster Jan 1996 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5604352 Schuetz Feb 1997 A
5608263 Drayton et al. Mar 1997 A
5663971 Carlsten Sep 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5780970 Singh et al. Jul 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5858799 Yee et al. Jan 1999 A
5889449 Fiedziuszko Mar 1999 A
5889797 Nguyen Mar 1999 A
5902489 Yasuda et al. May 1999 A
5963857 Greywall Oct 1999 A
5972193 Chou et al. Oct 1999 A
6005347 Lee Dec 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6117784 Uzoh Sep 2000 A
6139760 Shim et al. Oct 2000 A
6180415 Schultz et al. Jan 2001 B1
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6301041 Yamada Oct 2001 B1
6309528 Taylor et al. Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6448850 Yamada Sep 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6525477 Small Feb 2003 B2
6534766 Abe et al. Mar 2003 B2
6545425 Victor Apr 2003 B2
6552320 Pan Apr 2003 B1
6577040 Nguyen Jun 2003 B2
6580075 Kametani et al. Jun 2003 B2
6603781 Stinson et al. Aug 2003 B1
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636185 Spitzer et al. Oct 2003 B1
6636534 Madey et al. Oct 2003 B2
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6687034 Wine et al. Feb 2004 B2
6700748 Cowles et al. Mar 2004 B1
6724486 Shull et al. Apr 2004 B1
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6777244 Pepper et al. Aug 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6800877 Victor et al. Oct 2004 B2
6801002 Victor et al. Oct 2004 B2
6819432 Pepper et al. Nov 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6871025 Maleki et al. Mar 2005 B2
6885262 Nishimura et al. Apr 2005 B2
6900447 Gerlach et al. May 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops Jun 2005 B1
6924920 Zhilkov Aug 2005 B2
6936981 Gesley Aug 2005 B2
6943650 Ramprasad et al. Sep 2005 B2
6944369 Deliwala Sep 2005 B2
6952492 Tanaka et al. Oct 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7064500 Victor et al. Jun 2006 B2
7068948 Wei et al. Jun 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7130102 Rabinowitz Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7194798 Bonhote et al. Mar 2007 B2
7230201 Miley et al. Jun 2007 B1
7253426 Gorrell et al. Aug 2007 B2
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7309953 Tiberi et al. Dec 2007 B2
7342441 Gorrell et al. Mar 2008 B2
7362972 Yavor et al. Apr 2008 B2
7375631 Moskowitz et al. May 2008 B2
7436177 Gorrell et al. Oct 2008 B2
7442940 Gorrell et al. Oct 2008 B2
7443358 Gorrell et al. Oct 2008 B2
7470920 Gorrell et al. Dec 2008 B2
7473917 Singh Jan 2009 B2
7586097 Gorrell et al. Sep 2009 B2
7586167 Gorrell et al. Sep 2009 B2
20010002315 Schultz et al. May 2001 A1
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020068018 Pepper et al. Jun 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020122531 Whitham Sep 2002 A1
20020135665 Gardner Sep 2002 A1
20020139961 Kinoshita et al. Oct 2002 A1
20020158295 Armgarth et al. Oct 2002 A1
20020191650 Madey et al. Dec 2002 A1
20030010979 Pardo Jan 2003 A1
20030012925 Gorrell Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburg et al. Feb 2003 A1
20030103150 Catrysse et al. Jun 2003 A1
20030106998 Colbert et al. Jun 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040080285 Victor et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040092104 Gunn, III et al. May 2004 A1
20040108471 Luo et al. Jun 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040108823 Amaldi et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040218651 Iwasaki et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050104684 Wojcik May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050152635 Paddon et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060050269 Brownell Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060131176 Hsu Jun 2006 A1
20060131695 Kuekes et al. Jun 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060187794 Harvey et al. Aug 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075263 Gorrell et al. Apr 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070085039 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070146704 Schmidt et al. Jun 2007 A1
20070152176 Gorrell et al. Jul 2007 A1
20070154846 Gorrell et al. Jul 2007 A1
20070194357 Oohashi Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070238037 Wuister et al. Oct 2007 A1
20070252983 Tong et al. Nov 2007 A1
20070258492 Gorrell Nov 2007 A1
20070258689 Gorrell et al. Nov 2007 A1
20070258690 Gorrell et al. Nov 2007 A1
20070259641 Gorrell Nov 2007 A1
20070264023 Gorrell et al. Nov 2007 A1
20070264030 Gorrell et al. Nov 2007 A1
20070282030 Anderson et al. Dec 2007 A1
20070284527 Zani et al. Dec 2007 A1
20080069509 Gorrell et al. Mar 2008 A1
20080302963 Nakasuji et al. Dec 2008 A1
Foreign Referenced Citations (15)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 00072413 Nov 2000 WO
WO 0072413 Nov 2000 WO
WO 0225785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2005098966 Oct 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007081389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20070257208 A1 Nov 2007 US