This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C.§119 from an application for ELECTRON EMISSION DISPLAY DEVICE earlier filed in the Korean Intellectual Property Office on 17 Oct. 2005 and there duly assigned Serial No. 10-2005-0097699.
1. Field of the Invention
The present invention relates to an electron emission display, and in particular, to an electron emission display which corrects the discrepancy in light emission efficiency and luminance between red, green and blue phosphor layers.
2. Description of the Related Art
Generally, electron emission elements are classified, depending upon the kinds of electron sources, into a first type using a hot cathode, and a second type using a cold cathode.
Among the second typed electron emission elements using a cold cathode, are a field emission array (FEA) type, a surface-conduction emission (SCE) type, a metal-insulator-metal (MIM) type, and a metal-insulator-semiconductor (MIS) type.
The FEA-type electron emission element is typically constructed with electron emission regions, and cathode and gate electrodes as the driving electrodes for controlling the emission of electrons from the electron emission regions. The electron emission regions are made from a material having a low work function or a high aspect ratio. When an electric field is applied to the electron emission regions made from such a material under a vacuum atmosphere, electrons are easily emitted from those electron emission regions.
In an electron emission device, arrays of the electron emission elements are arranged on a first substrate of the electron emission display device. A light emission unit is formed on a second substrate constructed with phosphor layers and an anode electrode, which is assembled with the first substrate, thereby forming an electron emission display device.
In the electron emission display device, the red, green and blue phosphor layers are provided to the corresponding pixels, and the light emissions of the phosphor layers are controlled, thereby displaying the desired color images at the corresponding pixels. The light emissions of the red, green and blue phosphor layers are controlled by varying the number of electrons emitted from the electron emission regions corresponding to the corresponding phosphor layers.
The red, green and blue phosphor layers differ from each other in light emission efficiency and luminance due to the different characteristics of the materials from which each phosphor layer is made, even though the same number of electrons are colliding against the red, green and blue phosphor layers.
For instance, in order to display a white color image, the red, green and blue phosphor layers should emit the same amount of light. For this purpose, the same number of electrons are emitted from the electron emission regions corresponding to the red, green and blue phosphor layers, and hit the corresponding phosphor layers. The red, green and blue phosphor layers, however, do not emit the same amount of light due to the discrepancy in light emission efficiency and luminance between the red, green and blue phosphor layers so that the desired white color image cannot be obtained at the relevant pixel. And this problem deteriorates the screen display quality of the electron emission display.
In order to solve this problem, it has been contemporarily proposed that the amount of electron emissions corresponding to the corresponding phosphor layers should be controlled in the aspect of the driving circuit to correct the discrepancy in light emission efficiency and luminance between the different-colored phosphor layers. This proposal, however, complicates the driving circuit structure.
It is therefore an object of the present invention to provide an improved electron emission display device.
It is another object of the present invention to provide an electron emission display device which corrects the discrepancy in light emission efficiency and luminance between the different-colored phosphor layers, and simplifies the driving circuit structure.
These and other objects may be achieved by an electron emission display device constructed with the following features.
According to one aspect of the present invention, an electron emission display is constructed with first and second substrates facing each other, cathode electrodes formed on the first substrate, electron emission regions electrically connected to the cathode electrodes, and red, green and blue phosphor layers formed on a surface of the second substrate facing the first substrate. Each cathode electrode is constructed with a first electrode having opened portions arranged corresponding to each unit pixels defined on the first substrate with the same size, second electrodes formed within each opened portion of the first electrode and spaced apart from the first electrode, and resistance layers disposed between the first and the second electrodes to electrically interconnect the first and the second electrodes. The distance between the first and the second electrodes corresponding to the red, green and blue phosphor layers is established to be proportional to the light emission efficiency of the corresponding red, green and blue phosphor layers.
When the light emission efficiency of the red, green and blue phosphor layers is indicated by ER, EG and EB, respectively, and the distance between the first and the second electrodes corresponding to the red, green and blue phosphor layers is indicated by GR, GG and GB, respectively, the values of ER, EG and EB and the values of GR, GG and GB are established to simultaneously satisfy the following conditio
EG>ER>EB (1),
GG>GR>GB (2).
Particularly, the values of ER, EG and EB and the values of GR, GG and GB may be established to satisfy the following condition:
ER:EG:EB=GR:GG:GB.
It is possible that the first electrode contacts the electron emission region, and the second electrode surrounds the first electrode.
A more complete appreciation of the invention and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown.
As shown in
An electron emission element includes electron emission region 12, cathode electrode 7 and gate electrode 10. Arrays of electron emission elements are arranged on surface 3 of first substrate 2 facing second substrate 4 to form an electron emission unit. A light emission unit including phosphor layers 18 and an anode electrode 22 is formed on surface 5 of second substrate 4 facing first substrate 2.
First substrate 2 with the electron emission unit and second substrate 4 with the light emission unit are assembled with each other to form an electron emission display device 100.
The above-structured vacuum vessel 26 may be applied to the FEA type, the SCE type, the MIM type, the MIS type, and other types of electron emission display devices. The FEA type electron emission display device will be exemplified, and specifically explained below.
A plurality of cathode electrodes 6 are stripe-patterned on first substrate 2 in a direction of first substrate 2 (in the y axis direction of
A first insulating layer 8 is formed on the entire surface area of first substrate 2 such that first insulating layer 8 covers cathode electrodes 6. Gate electrodes 10 are stripe-patterned on first insulating layer 8 and extend perpendicularly to cathode electrodes 6 (in the x axis direction of
Cathode and gate electrodes 6 and 10 form crossed regions 28, which are operated as unit pixels 28. Electron emission regions 12 are formed on cathode electrodes 6 corresponding to unit pixels 28.
In this embodiment, cathode electrode 6 is constructed with a first electrode 61, a second electrode 62, and a resistance layer 63.
First electrode 61 has opened portions 611 disposed at each unit pixel 28 with the same size. An island-shaped second electrode 62 is formed within each opened portion 611 such that it is spaced apart from first electrode 61. The distances between first and second electrodes 61 and 62 in both x and y axis directions are differentiated for each unit pixel 28, and detailed explanation will be made later.
First and second electrodes 61 and 62 may be made from a metallic material such as chromium (Cr). Alternatively, first and second electrodes 61 and 62 maybe made from a transparent electrically conductive material.
A resistance layer 63 is disposed between first and second electrodes 61 and 62 to electrically interconnect them. In order to minimize the voltage drop along cathode electrode 6, resistance layer 63 may be made from a resistive material. Resistance layer 63 may be made from a material having a specific resistivity of between approximately 10,000Ωcm and approximately 100,000Ωcm, and commonly bears a resistance higher than that of the electrically conductive material-based cathode electrodes 61 and 62. For instance, resistance layer 63 may be made from p or n type doped amorphous silicon (Si).
First and second opened portions 81 and 101 are formed in first insulating layer 8 and gate electrodes 10, respectively, to expose electron emission region 12 on first substrate 2. That is, electron emission regions 12 are placed on cathode electrode 6 within first and second opened portions 81 and 101 of first insulating layer 8 and gate electrode 10, respectively. In this embodiment, electron emission region 12 and first and second opened portions 81 and 101 are planar circularly shaped, but the shape of electron emission region 12 and first and second opened portions 81 and 101 is not limited to this shape.
Electron emission regions 12 are made from a material emitting electrons when an electric field is applied to the material under a vacuum atmosphere, such as a carbonaceous material and a nanometer (nm) sized material. That is, electron emission regions 12 may be made from carbon nanotube, graphite, graphite nanofiber, diamond, diamond-like carbon, C60 (fullerene), silicon nanowire, or a combination of these materials. Alternatively, electron emission regions 12 may be made from a sharp-pointed tip structure mainly based on molybdenum (Mo) or silicon (Si).
Electron emission regions 12 may be arranged at each unit pixel 28 in a plural manner, one example of which is illustrated in
A second insulating layer 14 and a focusing electrode 16 are sequentially formed on gate electrodes 10. Second insulating layer 14 is placed under focusing electrode 16 and is formed on the entire surface area of first substrate 2 such that second insulating layer 14 covers gate electrodes 10, thereby insulating gate and focusing electrodes 10 and 16 from each other.
Third and fourth opened portions 141 and 161 are formed in second insulating layer 14 and focusing electrode 16, respectively, to pass the electron beams.
Focusing electrode 16 may have opened portions 161 corresponding to either each electron emission region 12 to separately focus the electrons emitted from each electron emission region 12, or each unit pixel 28 to collectively focus the electrons emitted from each unit pixel 28. The latter case is illustrated in
Discrete phosphor layers 18 including red, green and blue phosphor layers 18R, 18G and 18B are formed spaced apart on surface 5 of second substrate 4 facing first substrate 2. A black layer 20 is disposed between phosphor layers 18R, 18G and 18B to enhance the screen contrast. Phosphor layers 18R, 18G and 18B may be arranged in alignment with the corresponding unit pixels defined on first substrate 2, respectively.
An anode electrode 22 is disposed on phosphor and black layers 18 and 20 and is made from a metallic electrically conducting material such as aluminum (Al). Anode electrode 22 receives a high voltage required for accelerating the electron beams from the outside such that phosphor layers 18 are in a high potential state, and the visible light radiated from phosphor layers 18 to first substrate 2 is reflected by anode electrode 22 toward second substrate 4, thereby heightening the screen luminance.
Alternatively, anode electrode 22 may be made from a transparent conductive material such as indium tin oxide (ITO). In this case, the transparent anode electrode 22 is disposed between second substrate 4 and phosphor layers 18. It is also possible in an alternative embodiment that a metallic layer is provided in addition to the transparent, electrically conductive layer to function as anode electrode 22, thereby forming a light emission unit.
Spacers 24 are arranged between first and second substrates 2 and 4 to maintain the distance between first and second substrates 2 and 4 constant while enduring the pressure applied to the vacuum vessel 26.
Spacers 24 are arranged to correspond to focusing electrode 16 on the side of first substrate 2, and correspond to the area of black layer 20 on the side of second substrate 4 such that they do not block the areas of phosphor layers 18.
In this embodiment, the distance between first and second electrodes 61 and 62 is differentiated with respect to the corresponding red, green and blue phosphor layers 18R, 18G and 18B.
That is, in order to correct the discrepancy in light emission efficiency between the different-colored phosphor layers 18, distance GR between first and the second electrodes 61 and 62 corresponding to red phosphor layer 18R, distance GG between first and second electrodes 61 and 62 corresponding to green phosphor layer 18G, and distance GB between first and second electrodes 61 and 62 corresponding to blue phosphor layer 18B are established so as to be proportional to the light emission efficiencies of the corresponding phosphor layers 18.
Although the light emission efficiency is different for different phosphor layers 18 depending upon the materials of the components of each phosphor layer 18R, 18G or 18B, light emission efficiency EG of green phosphor layer 18G is the highest, and light emission efficiency ER of red phosphor layer 18R is the second highest, and light emission efficiency EB of blue phosphor layer 18B is the lowest. That is, EG>ER>EB.
For instance, red phosphor layer 18R may be made from an oxide-based compound such as Y2O3:Eu, blue phosphor layer 18B may be made from an oxide-based compound such as Y2SiO5:Ce, and green phosphor layer 18G may be made from a sulfide-based compound such as ZnS:Cu.
When compared to the phosphor layer bearing a relatively low light emission efficiency, the phosphor layer bearing a relatively high light emission efficiency emits larger amount of visible lights and involves heightened luminance, even if the same number of electrons collides against both phosphor layers bearing a relatively high light emission efficiency and a relatively low light emission efficiency. Therefore, the electron emission region corresponding to the phosphor layer with a relatively high light emission efficiency should be established to emit a smaller number of electrons compared to the electron emission region corresponding to the phosphor layer with a relatively low light emission efficiency. That is, the discrepancy in light emission efficiency between the corresponding phosphor layers may be corrected by controlling the number of electrons emitted from the electron emission regions.
In this embodiment, the number of electrons emitted may be controlled by varying the distance between first and second electrodes 61 and 62. That is, the distance between first and second electrodes 61 and 62 can be reduced to increase the amount of electron emission, whereas the distance between first and second electrodes 61 and 62 can be enlarged to decrease the amount of electron emission.
Specifically, the distance between first and second electrodes 61 and 62 is controlled by varying the size of second electrode 62. As the same-sized opened portions 611 are formed in first electrodes 61 for each unit pixels 28, first electrodes 61 are even in size between unit pixels. By contrast, second electrodes 62 disposed within opened portions 611 of first electrodes 61 are enlarged or reduced in width, thereby controlling the distance between first and second electrodes 61 and 62.
Such a structure is made utilizing the principle that the distance between first and second electrodes 61 and 62 is proportional to the width of resistance layer 63, and the width of resistance layer 63 is proportional to the resistance of resistance layer 63, which is in turn inversely proportional to the amount of electric current flowing between first and second electrodes 61 and 62.
Based on the above principles, as shown in
Furthermore, with these different interelectrode distances, the ratio of light emission efficiency ER of red phosphor layer 18R to light emission efficiency EG of green phosphor layer 18G and to light emission efficiency EB of blue phosphor layer 18B may be established to be equal to the ratio of distance GR between first and second electrodes 61 and 62 corresponding to red phosphor layer 18R to distance GG between first and second electrodes 61 and 62 corresponding to green phosphor layer 18G and to distance GB between first and second electrodes 61 and 62 corresponding to blue phosphor layer 18B. That is, ER:EG:EB=GR:GG:GB.
Particularly, when red and blue phosphor layers 18R and 18B are made from an oxide-based compound and green phosphor layers 18G are made from a sulfide-based compound, the ratio in light emission efficiency of red phosphor layer 18R to green phosphor layer 18G and to blue phosphor layer 18B may be established to be 3:6:1. That is, ER:EG:EB=3:6:1. Accordingly, the ratio of the distance between first and second electrodes 61 and 62 corresponding to red phosphor layer 18R to distance GG between first and second electrodes 61 and 62 corresponding to green phosphor layer 18G and to distance GB between first and second electrodes 61 and 62 corresponding to blue phosphor layer may be also established to be 3:6:1. That is, GR:GG:GB=3:6:1.
In this embodiment, as the effective width of first electrode 61, through which the electric current is practically flowing, is the same for all cathode electrodes 6, the electric current characteristic such as a voltage drop is relatively the same for all cathode electrodes 6 compared to the case where the width of first electrode 61 varies.
With a structure constructed according to the principles of the present invention, the width of the resistance layer of the cathode electrode may be controlled to correct the discrepancy in light emission efficiency and luminance between the different-colored phosphor layers, thereby enhancing the screen display quality, and simplifying the driving circuit structure because with this structure it is not necessary to make the correction in the aspect of the driving circuit.
Although preferred embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many variations and/or modifications of the basic inventive concept herein taught which may appear to those skilled in the art will still fall within the spirit and scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0097699 | Oct 2005 | KR | national |