ELECTRON EMISSION DISPLAY

Information

  • Patent Application
  • 20080048550
  • Publication Number
    20080048550
  • Date Filed
    March 28, 2007
    17 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
An electron emission device includes first and second substrates facing each other, an electron emission unit provided on a first surface of the first substrate, a light emission unit provided on a first surface of the second substrate facing the first substrate, and a sealing member for sealing peripheries of the first and second substrates together. The sealing member contacts a first insulation layer of the electron emission unit.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specification, illustrate exemplary embodiments of the present invention, and, together with the description, serve to explain the principles of the present invention.



FIG. 1 is a sectional view of an electron emission display illustrating a concept of the present invention;



FIG. 2 is a top view of the electron emission display of FIG. 1;



FIG. 3 is a sectional view of an electron emission display having an array of FEA elements according to an embodiment of the present invention;



FIG. 4A is a view illustrating a driving voltage waveform applied to cathode electrodes of an electron emission display having an array of FEA elements according to an embodiment of the present invention.



FIG. 4B is a view illustrating a conventional driving voltage waveform.



FIG. 5 is a sectional view of an electron emission display having an array of FEA elements according to another embodiment of the present invention; and



FIG. 6 is a sectional view of an electron emission display having an array of FEA elements according to an embodiment of the present invention.





DETAILED DESCRIPTION OF INVENTION

In the following detailed description, only certain exemplary embodiments of the present invention are shown and described, by way of illustration. As those skilled in the art would recognize, the described exemplary embodiments may be modified in various ways, all without departing from the spirit or scope of the present invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.



FIGS. 1 and 2 show an electron emission display according to an embodiment of the present invention.


The electron emission display includes first and second substrates 10 and 12 facing each other and spaced apart by a distance therebetween (wherein the distance therebetween may be predetermined). A sealing member (not shown) is provided at the peripheries of the first and the second substrates 10 and 12 to seal them together, thereby forming an envelope. The interior of the envelope is exhausted and kept at a degree of vacuum of about 10−6 Torr.


The sealing member 14 may include frit bars formed by a mixture of glass frit and organic compound through an extrusion molding process. Alternatively, the sealing member 14 may include a glass frame and adhesive layers formed on top and bottom surfaces of the glass frame. In a sintering process, the frit bars or the adhesive layers are then heated to a molten state to bond the first and second substrates 10 and 12 together.


An electron emission device (or unit) 100 on which electron emission elements are arrayed is provided on a surface of the first substrate 10 facing the second substrate 12 and a light emission unit 110 including phosphor layers and an anode electrode is provided on a surface of the second substrate 12 facing the first substrate 10.


The first substrate 10 on which the electron emission unit 100 is provided is combined with the second substrate 12 on which the light emission unit 110 is provided to form the electron emission display.


Here, since a lead line 321 of the anode electrode extend from the light emission unit 110 to an edge of the second substrate 12 over the sealing member 14, the lead line 321 of the anode electrode is connected to an external driving circuit unit (not shown). Therefore, the anode electrode receives a high voltage required for accelerating electron beams through the lead line 321 of the anode electrode.


In addition, leads 160 of a plurality of first electrodes (cathode electrodes or data electrodes) and leads 302 of a plurality of second electrodes (gate electrodes or scan electrodes) are formed at the first substrate 10 and connected to one or more external driving circuits.


The above-described electron emission display has an effective area 200 that corresponds to where the electron emission unit 100 and the light emission unit 110 are provided to perform the electron emission and the image display and an non-effective area 210 surrounding the effective area 200.


In this embodiment, an insulation layer 18 extends from an end of the effective area 200 of the first substrate 10 to the non-effective area 210 of the first substrate 10, and the sealing member 14 is disposed on the insulation layer 18. Therefore, a direct contact between the electrodes of the electron emission unit 100 formed on the first substrate 10 and the sealing member 14 can be prevented.


The detailed structures of the electron emission unit 100 and the light emission unit 110 and the relationship between the electrodes of the electron emission unit 100 and the sealing member 14 will be described in more detail below.


The above-described concept of the present invention can be applied to an electron emission display having an array of FEA elements, SCE elements, MIM elements, or MIS elements. In the following description, an electron emission display having the array of FEA elements will be exampled in more detail.



FIG. 3 is a sectional view of an electron emission display having an array of FEA elements according to an embodiment of the present invention.


Referring to FIG. 3, a plurality of first electrodes (cathode electrodes or data electrodes) 26 are formed on a first substrate 20 in a stripe pattern extending along a first direction (a direction of a Y-axis of FIG. 3).


A first insulation layer 28 is formed on the first substrate 20 while covering the cathode electrodes 26. A plurality of second electrodes (gate electrodes or scan electrodes) 40 are formed on the first insulation layer 28 in a stripe pattern extending along a second direction (a direction of an X-axis of FIG. 3) to cross the cathode electrodes 26 at right angles.


Each crossed region of the cathode and gate electrodes 26 and 40 defines a unit pixel (or pixel unit). Electron emission regions 42 are formed on the cathode electrodes 26 to correspond to the unit pixels.


In addition, first and second openings 281 and 401 corresponding to the electron emission regions 42 are formed on the first insulation layer 28 and the gate electrodes 40 to expose the electron emission regions 42. That is, the electron emission regions 42 are formed on the cathode electrodes 26 through the first and second openings 281 and 401 of the first insulation layer 28 and the gate electrodes 40. In this embodiment, each of the electron emission regions 42 and the first and second openings 281 and 401 is formed to have a circular shape when viewed from a top. However, the present invention is not limited to this shape.


The electron emission regions 42 may be formed by a material, which emits electrons when an electric field is applied thereto under a vacuum atmosphere, such as a carbonaceous material and/or a nanometer-size material. For example, the electron emission regions 42 may be formed by carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, C60, silicon nanowires, or combinations thereof. Alternatively, the electron emission regions 42 may be formed as a molybdenum (Mo)-based and/or silicon (Si)-based pointed-tip structure.


Two or more electron emission regions 42 may be arranged at each unit pixel. Here, the electron emission regions 42 may be arranged in series along a length of one of the cathode and gate electrodes 26 and 40. However, the present invention is not limited to the arrangement of the electron emission regions 42 as shown herein.


A second insulation layer 44 and a focusing electrode 46 are successively formed on the gate electrodes 40. The second insulation layer 44 is formed on an entire surface of the first substrate 20 to cover the gate electrodes 40, thereby insulating the gate electrodes 40 from the focusing electrode 46.


Third and fourth openings 441 and 461 for allowing electron beams to pass therethrough are respectively formed on the second insulation layer 44 and the focusing electrode 46.


In this embodiment, one of the third openings 441 of the second insulation layer 44 and one of the fourth openings 461 of the focusing electrode 46 are formed to correspond to a corresponding one of the electrode emission regions 42 at each unit pixel. Alternatively, one of the third openings of the second insulation layer is formed to correspond to a group of the electron emission regions 42 at each unit pixel and a corresponding one of the fourth openings of the focusing electrode is formed to correspond to the one of the third openings.


Also, in this embodiment, the first and second insulation layers 28 and 44 extend from a point of an effective area 600 of the first substrate 20 to a non-effective area 602 of the first substrate 20.


On a surface of the second substrate 22 facing the first substrate 20, phosphor layers 48 such as red, green and blue phosphor layers 48R, 48G and 48B are formed and spaced apart from each other at certain (or predetermined) intervals. Black layers 50 are formed between the phosphor layers 48 to improve the contrast of a screen. The phosphor layers 48 may be formed to correspond to the respective unit pixels defined (or formed) on the first substrate 20.


An anode electrode 52 formed by a conductive (or metallic) material such as aluminum is formed on the phosphor and black layers 48 and 50. The anode electrode 52 functions to heighten the screen luminance by receiving a high voltage required for accelerating the electron beams and reflecting the visible light rays radiated from the phosphor layers 48 to the first substrate 20 back toward the second substrate 22, thereby heightening the screen luminance.


Alternatively, the anode electrode 52 can be formed by a transparent conductive material, such as Indium Tin Oxide (ITO), instead of the metallic material (or metal). In this case, the anode electrode 52 is placed between the second substrate 22 and the phosphor and black layers 48 and 50. Furthermore, when the anode electrode 52 is formed by a transparent conductive material, the electron emission display may further include a metal layer for enhancing the luminance.


Disposed between the first and second substrates 20 and 22 are spacers 54 for uniformly maintaining a gap between the first and second substrates 20 and 22 against an external (or outer) force.


The spacers 54 are arranged on portions of the black layers 28 so as not to intrude (or interfere or trespass) on the phosphor layers 48.


The first and second substrates 20 and 22 are sealed together at their peripheries using a sealing member 24 to form a vacuum envelope (or chamber). The sealing member 24 is deposited on a periphery of one of the first and second substrates 20 and 22 (e.g., the first substrate 20 in this embodiment). Then, the first and second substrates 20 and 22 are bonded together through a sealing process and a sintering process.


The sealing member 24 may be formed by any suitable sealing materials such as frit bars. The sealing member 24 is formed on the first substrate 20 to correspond to an edge of the second insulation layer 44. That is, as shown in FIG. 3, the sealing member 24 is arranged to contact the second insulation layer 44 while directly contacting the second substrate 22 to bond the first and second substrates 20 and 22 together.


Therefore, since the electrodes (cathode and/or gate electrodes) of the electron emission unit formed on the first substrate 20 do not directly contact the sealing member 24, the problem (i.e., the driving voltage distortion problem), which is caused by the contact between the electrodes of the electron emission unit and the sealing member in the conventional art, can be solved.



FIG. 4A is a view illustrating a driving voltage waveform of cathode electrodes of an electron emission display according to an embodiment of the present invention.


Referring to FIG. 4A, the distortion degree of the driving voltage waveform in the embodiment of the present invention is considerably less when compared to the distortion degree of the driving voltage waveform in the conventional art as shown in FIG. 4B. In each of FIGS. 4A and 4B, the solid line is an example of the actual (or effective) driving voltage waveform and the dotted line is the ideal driving voltage waveform.


Furthermore, leads 402 of the gate electrodes 40 are disposed between the first and second insulation layers 28 and 44 and exposed to an external side of the vacuum envelope. The leads 402 are connected to a driving circuit (not shown). Leads 260 of the cathode electrodes 26 are disposed between the first substrate 20 and the first insulation layer 28 and exposed to the external side of the vacuum envelope that is also connected to a driving circuit (not shown).


Here, since the leads 260 of the cathode electrodes 26 and the leads 402 of the gate electrodes 40 are respectively covered (or separated from the sealing member 21) by the first and second insulation layers 28 and 44, the leads 260 and 402 do not contact the sealing member 24.



FIG. 5 is a sectional view of an electron emission display having an array of FEA elements according to another embodiment of the present invention.


Referring to FIG. 5, an electron emission display of this embodiment is substantially identical to that of the foregoing embodiment of FIG. 3. However, in this embodiment, a sealing member 60 may selectively contact one of first and second insulation layers 64 and 66 formed on a first substrate 62.


That is, a portion of the sealing member 60 disposed at a portion where leads 680 of gate electrodes 68 are arranged to contact the second insulation layer 66, and another portion of the sealing member 60 disposed at a portion facing (or opposite to) the leads 680 of the gate electrodes 68 are arranged to contact the first insulation layer 64.


In addition, another portion of the sealing member 60, which is not shown in FIG. 5, may contact selectively one of the first and second insulation layers 64 and 66. That is, a portion of the sealing member 60 disposed at a portion where leads of cathode electrodes are arranged to contact either the second insulation layer 66 or the first insulation layer 64 depending on whether the second insulation layer 66 is extended to the sealing member. To put it another way, according to the contact state of the sealing member 60, the patterns of the first and second insulation layers 64 and 66 formed on the first substrate 62 are determined.



FIG. 6 is a sectional view of an electron emission display having an array of FEA elements according to an embodiment of the present invention.


Referring to FIG. 6, an electron emission display of this embodiment is substantially identical to that of the foregoing embodiment of FIG. 3 except for a contact portion of a sealing member 72 at a first substrate 70.


That is, according to this embodiment, the sealing member 72 does not contact any one of insulation layers 74 and 76 at the first substrate 70, and instead does contact an insulation portion 78 that is additionally formed.


The insulation portion 78 is interposed between the sealing member 72 and the first substrate 70 and spaced apart from the insulation layers 74 and 76 by a certain (or predetermined) distance. The sealing member 72 contacts the insulation portion 78 to bond the first and second substrates 70 and 80 together. In addition, leads of cathode and gate electrodes 82 and 84 of an electron emission unit extend out of the vacuum envelope through an opening between the insulation portion 78 and the first substrate 70 and are connected to respectively driving circuits.


An operation of the electron emission display depicted in FIG. 3 will now be exemplarily described below.


The electron emission display is driven when a certain (or predetermined) voltage is applied to the cathode, gate, focusing, and anode electrodes 26, 40, 46, and 52.


For example, when the cathode electrodes 26 function as scan electrodes for receiving scan driving voltages, the gate electrodes 40 function as data electrodes for receiving data driving voltages (or vise versa). In this embodiment, the cathode electrodes 26 function as the data electrodes while the gate electrodes 40 function as the scan electrodes.


The focusing electrode 46 receives a voltage required for focusing (or converging) the electron beams, for example, OV or a negative direct current voltage ranging from several to several tens of volts. The anode electrode 52 receives a direct current voltage that can accelerate the electron beams, for example, ranging from hundreds to thousands of volts.


Electric fields are formed around the electron emission regions 42 at the unit pixels where a voltage difference between the cathode and gate electrodes 26 and 40 is equal to or higher than a threshold value and thus the electrons are emitted from the electron emission regions 42. As a bundle of electron beams, the emitted electrons are focused (or converged) to the central portion of the bundle of the electron beams while passing through the fourth openings 461 of the focusing electrode 46 and strike the phosphor layers 48 of the corresponding unit pixels by the high voltage applied to the anode electrode 52, thereby exciting the phosphor layers 48 to emit light and/or realize an image.


In the electron emission display according to this embodiment, since the insulation layer extends up to the non-effective area that does not relate to the light emission and/or image display and the sealing member is arranged on the insulation layer, direct contact between the electrodes of the electron emission unit and the sealing member can be avoided or prevented.


Accordingly, when the electron emission display is being driven, the voltage distortion caused by a voltage interference between adjacent electrodes can be reduced, minimized, or prevented.


By reducing, minimizing, or preventing the voltage interference, the color reproduction, luminance, and response speed can be improved to improve the display quality.


While the invention has been described in connection with certain exemplary embodiments, it is to be understood by those skilled in the art that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications included within the spirit and scope of the appended claims and equivalents thereof.

Claims
  • 1. An electron emission display comprising: a first substrate;a second substrate facing the first substrate;an electron emission unit provided on a first surface of the first substrate;a light emission unit provided on a first surface of the second substrate facing the first substrate; anda sealing member for sealing peripheries of the first and second substrates together,wherein the sealing member contacts an insulation layer of the electron emission unit.
  • 2. The electron emission display of claim 1, wherein the electron emission unit comprises: a first electrode formed on the first substrate and extending along a first direction;a second electrode formed on the first substrate and extending along a second direction crossing the first direction with the insulation layer interposed between the first and second electrodes; andan electron emission region formed on the first electrode and electrically connected to the first electrode.
  • 3. The electron emission display of claim 2, wherein the electron emission region is formed by a material selected from the group consisting of carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, C60, silicon nanowires, and combinations thereof.
  • 4. The electron emission display of claim 1, wherein the electron emission unit comprises: a first electrode formed on the first substrate and extending along a first direction;a second electrode formed on the first substrate and extending along a second direction crossing the first direction with a first insulation layer interposed between the first and second electrodes; anda third electrode disposed on the second electrode with a second insulation layer interposed between the second and third electrodes,wherein the insulation layer is the first insulation layer or the second insulation layer.
  • 5. The electron emission display of claim 4, wherein the electron emission region is formed by a material selected from the group consisting of carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, C60, silicon nanowires, and combinations thereof.
  • 6. The electron emission display of claim 4, wherein the second insulation layer extends out of an effective area of the first substrate so that the sealing member contacts the second insulation layer.
  • 7. The electron emission display of claim 1, wherein the sealing member is formed by a frit bar.
  • 8. The electron emission display of claim 1, wherein the electron emission region is formed by a material selected from the group consisting of carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, C60, silicon nanowires, and combinations thereof.
  • 9. The electron emission display of claim 1, wherein the light emission unit comprises: a phosphor layer formed on the second substrate; andan anode electrode formed on the second substrate and connected to the phosphor layer.
  • 10. An electron emission display comprising: a first substrate;a second substrates facing the first substrate;an electron emission unit provided on a first surface of the first substrate;a light emission unit provided on a first surface of the second substrate facing the first substrate;a sealing member for sealing peripheries of the first and second substrates together; andan insulation portion interposed between the first substrate and the sealing member.
  • 11. The electron emission display of claim 10, wherein the sealing member is formed by a frit bar.
  • 12. The electron emission display of claim 10, wherein the electron emission unit comprises: a first electrode formed on the first substrate and extending along a first direction;a second electrode formed on the first substrate and extending along a second direction crossing the first direction with a first insulation layer interposed between the first and second electrodes; andan electron emission region formed on the first electrode and electrically connected to the first electrode.
  • 13. The electron emission display of claim 12, further comprising a focusing electrode formed on the first and second electrodes and insulated from the first and second electrodes.
  • 14. The electron emission display of claim 12, wherein the electron emission region is formed by a material selected from the group consisting of carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, C60, silicon nanowires, and combinations thereof.
  • 15. The electron emission display of claim 12, wherein the insulation portion is spaced apart from at least three insulation layers by a distance therebetween.
  • 16. The electron emission display of claim 10, wherein the light emission unit comprises: a phosphor layer formed on the second substrate; andan anode electrode formed on the second substrate and connected to the phosphor layer.
  • 17. The electron emission display of claim 10, wherein the electron emission unit comprises: a first electrode formed on the first substrate and extending along a first direction;a second electrode formed on the first substrate and extending along a second direction crossing the first direction with a first insulation layer interposed between the first and second electrodes.
  • 18. The electron emission display of claim 17, wherein the insulation portion is spaced apart from the first insulation layer by a distance therebetween.
  • 19. The electron emission display of claim 10, wherein the electron emission unit comprises: a first electrode formed on the first substrate and extending along a first direction;a second electrode formed on the first substrate and extending along a second direction crossing the first direction with a first insulation layer interposed between the first and second electrodes; anda third electrode disposed on the second electrode with a second insulation layer interposed between the second and third electrodes.
  • 20. The electron emission display of claim 19, wherein the insulation portion is spaced apart from the first and second insulation layers by a distance therebetween.
Priority Claims (1)
Number Date Country Kind
10-2006-0080038 Aug 2006 KR national