Electron emission source and field emission display device

Information

  • Patent Application
  • 20070290597
  • Publication Number
    20070290597
  • Date Filed
    December 07, 2006
    18 years ago
  • Date Published
    December 20, 2007
    17 years ago
Abstract
An electron emission source and a field emission display device are disclosed. The electron emission source includes a substrate and an electron emission layer formed on the substrate. The electron emission layer includes a composition of diamond-like carbon (DLC) film structures. The height of the DLC flakes is in micrometer scale, and the thickness of the DLC flakes is in nanometer scale. Hence, the aspect ratio of the DLC film structures is high. Therefore, the DLC film can be used as a good electron emission source. A conductive layer can be optionally deposited on the surface of the substrate for further enhancing DLC film in electron emission.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view showing a sputtering reaction chamber used for making a DLC film layer according to a first embodiment of the present invention;



FIG. 2 is a Scanning Electron Microscope (SEM) photo of the DLC powder obtained in the first embodiment of the invention;



FIG. 3 is a schematic view illustrating a diode-type field emission testing apparatus for testing field emission effects according to the first embodiment of the invention;



FIG. 4 is a plot showing the result of the field emissions test performed on the electron emission source formed by mixing DLC powder into a paste composition according to a second embodiment of the invention;



FIG. 5 is a schematic view illustrating a triode-type field emission testing apparatus for testing field emission effects according to the second embodiment of the invention; and



FIG. 6 shows a plot of the field emission effects according to a third embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Embodiment 1

Below, a DLC film layer fabrication process according to the first embodiment of the present invention is described. FIG. 1 shows a schematic view of a sputtering reaction chamber 100 for making the DLC film layer according to this embodiment.


First, a reaction chamber 100 capable of performing sputtering is provided. The reaction chamber 100 includes a heater 10 and lamp 1 for heating a substrate 111, a loading platform 11 for supporting the substrate 111, a power supply 13 for applying voltage on a target material 12, and a plurality of gas supplying units A, B, and C for supplying reactant gas. During formation of the DLC film layer, the number of the gas supplying units can be increased or decreased depending on the gas conditions required for the process.


Then, the surface of the substrate 111 is cleaned and the substrate 111 is thereafter disposed on the loading platform 11 in the reaction chamber 100 so as to secure the substrate 111. In this embodiment, the substrate 111 is a semiconductor silicon wafer. Then, a vacuum pump device 14 removes air from the reaction chamber 100 to leave a pressure of under 1×10−5 torr, and lamp 1 the heater 10 heats the substrate 111 up to a temperature of 500° C. Then, the gases required for reaction are supplied by the gas supplying units A, B, C into the reaction chamber 100, and a mass flow controller (not shown) is provided for controlling the flow rates of the gases into the reaction chamber 100. The gas-supplying units A, B, and C in the embodiment are gas-supplying sources containing argon, methane, and hydrogen, respectively. Whether the gases are introduced into the reaction chamber 100 is determined by the manufacturing conditions, and the flow of the gases is regulated by gas supplying valves a1, b1 and c1. In this embodiment, the gases introduced into the reaction chamber 100 are argon, methane and hydrogen, with a ratio of 2:1:1, as indicated in table 1.













TABLE 1







Argon
Methane
Hydrogen





















Embodiment 1
10
5
5










In this embodiment, when the reactant gases are introduced into the reaction chamber 100, the internal pressure is controlled to 9×10−3 torr. Of course, the surrounding pressure for a sputtering reaction according to this embodiment is not to be limited, but can be adjustable upon manufacturing needs.


Thereafter, the graphite target material 12 is pre-sputtered for 30 minutes with 200W of RF power so as to remove possible pollutants from the surface of the target material 12 as the shutter 15 is closed. Then, the shutter 15 is opened and the surface of substrate 111 undergoes sputtering for 70 minutes to grow a DLC layer on substrate surface.


Embodiment 2

The DLC layer deposited on the substrate surface according to the first embodiment is removed for obtaining a DLC powder. The DLC powder is then mixed together with a silver powder and adhesives into a paste for use as an electron emission source material. FIG. 2 is an SEM (Scanning Electron Microscope) photo of the DLC powder obtained in the first embodiment.


A composition with 8.7% DLC powder, 8.7% glass powder and 82.6% silver powder is evenly mixed together, with addition of ethyl cellulose as adhesives, to form a paste for use as an electron emission source material. In this embodiment, a glass substrate with a conductive silver paste thereon is taken as a cathode plate. The above-mentioned electron emission source paste is coated on the silver paste surface so as to complete the cathode plate structure. In this embodiment, an anode plate is structurally equivalent to the one in the first embodiment.


The above-described structural combination is then tested through a diode type field emission testing apparatus for field emission effects.



FIG. 3 is schematic view illustrating the diode configuration used for testing field emission effects according to the present embodiment of the invention. In the field emission test of this embodiment, a test film 3 of DLC film paste layer 31 is used as a cathode plate 301, and a substrate 32 with a luminance layer 33 is used as an anode plate 302. In this embodiment, the luminance layer 33 is a phosphor layer, and the ITO glass substrate 32 is a glass substrate having an ITO layer that acts as the anode layer (not shown).


First, a cathode plate 301 is emplaced in a container 35, and above which is covered with an anode plate 302. The container 35 is then placed inside a vacuum chamber and the pressure is reduced to below 1×10−6 torr. A voltage is applied between the two electrode plates 301 and 302 for measuring the magnitude of the current produced by the electron emission source of the cathode plate 301.



FIG. 4 shows the plot of the result of the field emissions test performed on the electron emission source formed by mixing DLC powder into a paste composition. As shown, a sintered electron emission source paste presents more superior field emission effects than an unsintered electron emission source paste. Namely, when the same voltage potential is applied between the two electrode plates, the electron emission source with a sintered substrate surface has a higher current flow.


Embodiment 3


FIG. 5 is schematic illustrating a triode type field emission testing apparatus used in the present embodiment of the invention. In this embodiment, the electron emission source is same as the one used in the second embodiment. Namely, the same mixing composition is used to obtain the electron emission source paste.


As shown in FIG. 5, as compared with the diode-type field emission testing apparatus, the triode-type field emission testing apparatus of this embodiment has an additional gate electrode layer 74 on a cathode plate 701 and an insulating layer 73 for insulating the cathode layer 71 from the gate layer 74. Thus, the cathode layer 71, the gate electrode layer 74, and an anode layer 76 form together a triode configuration. Preferably, the cathode layer 71 in this embodiment is molybdenum/titanium metal; the gate electrode layer 74 is molybdenum, and the anode layer 76 is ITO.


The electron emission source paste of this embodiment is coated over the surface of the cathode layer 71, and a voltage potential is applied between the two electrode plates 701 and 702 for testing field emission effects. Meanwhile, a voltage difference is applied between the cathode layer 71 and the gate electrode layer 74 so as to enhance the electron emission effects of the electron emission source.



FIG. 6 shows the plot of the field emission effects of the present embodiment. When the electric field applied between the two electrode plates increases, the current density of the electron emission source also increases. Also, as known from FIG. 6, when the voltage difference applied between the cathode layer 71 and the gate electrode layer 74 is incrementally increased from 5V to 35V, the field emission effects are greatly increased. However, this applied voltage difference has its limitations. That is, if the voltage difference is greater than the load that the elements can sustain, such as by applying a voltage difference of 40V and 50V between the cathode layer 71 and the gate electrode layer 74, then most electrons will be attracted towards the gate electrode, causing adverse effects.


Thus, as indicated in the above embodiments, the DLC structure manufactured according to the present invention aids to increase the field emission effects. The DLC not only can be evenly distributed in the electron emission source material, but also the film structure formed on the substrate can be used as the electron emission source. The field emission effects achieved by the two different methods both bear a low starting voltage, a quality favorable for a good cathode electron emission source.


Embodiment 4

The following is a description about a field emission display according to a preferred embodiment of the invention. The field emission display in this embodiment is similar to the triode-type field emission testing apparatus described in the third embodiment. Aside from an additional phosphor layer and a photo-mask layer on the anode plate, the structure of a lower substrate in this embodiment is the same as that of the third embodiment.


The electron emission source of the field emission display in this embodiment is an electron emission source paste formed by mixing DLC powder, glass powder, silver powder and ethylene cellulose, and coated on the surface of a cathode layer having conductive silver paste, which are then sintered to form an electron emission layer.


In this embodiment, when an electric field is applied between the two electrode plates of the field emission display, where a voltage difference is simultaneously applied between the gate electrode player and the cathode layer, the electron emission source emits electrons to impinge on the phosphor layer of the anode plate so as to cause luminescence.


Embodiment 5

Aside from the difference in the electron emission sources of the lower substrate, the field emission display in this embodiment is structurally similar to the one shown in the fourth embodiment.


In this embodiment, the surface of the lower substrate includes a molybdenum/titanium metal layer that acts as a cathode layer. The material of the substrate used in this embodiment is glass. Also, the surface of the cathode layer in this embodiment includes a patterned insulating layer and gate electrode layer to partially expose the surface of the cathode. The insulating layer in this embodiment is disposed between the cathode layer and the gate electrode layer to provide electrical insulation.


The above-mentioned lower substrate structure is placed in a sputtering reaction chamber, and undergone a sputtering reaction as described in the first embodiment so as to grow an electron emission layer having a DLC film layer on the exposed cathode surface. Finally, the DLC film layer deposited on the surface of the gate electrode is removed so as to obtain the lower substrate of the field emission display of the present embodiment. The structural characteristic of the DLC film layer in this embodiment is similar to that of the first embodiment.


As described above, according to the present invention, a DLC with micro-scale film structures can be manufactured, that have a high aspect ratio favorable in use as electron emission source material applied in a cold cathode emitting source, such as field emission elements, field emission displays, or flat panel light sources.


Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the invention as hereinafter claimed.

Claims
  • 1. An electron emission source, comprising: a substrate; andan electron emission layer formed on the surface of the substrate;wherein the electron emission layer comprises a composition of Diamond-Like Carbon (DLC) flakes with a plurality of micro-scale film structures.
  • 2. The electron emission source as claimed in claim 1, wherein the substrate is constituted of a semiconductor material, a metal material, an insulating material, or a glass material.
  • 3. The electron emission source as claimed in claim 1, wherein the composition further comprises a conductive material, an adhesive material, or a combination thereof.
  • 4. The electron emission source as claimed in claim 1, wherein the film structures are curved film structures, long-strip film structures, or a combination thereof.
  • 5. The electron emission source as claimed in claim 1, wherein the thickness of the film structures is between 0.005 μm and 0.1 μm.
  • 6. The electron emission source as claimed in claim 1, wherein the thickness of the film structures is between 0.005 μm and 0.05 μm.
  • 7. The electron emission source as claimed in claim 1, wherein the lateral height of the film structures is between 0.5 μm and 4.0 μm.
  • 8. The electron emission source as claimed in claim 1, wherein the lateral height of the film structures is between 0.9 μm and 2.0 μm.
  • 9. An electron emission source, comprising: a substrate;a conduction layer formed on the surface of the substrate; andan electron emission layer formed on the surface of the substrate;wherein the electron emission layer comprises a composition of Diamond-Like Carbon flakes with a plurality of micro-scale film structures.
  • 10. The electron emission source as claimed in claim 9, wherein the substrate is constituted of a semiconductor material, a metal material, an insulating material, or a glass material.
  • 11. The electron emission source as claimed in claim 9, wherein the composition further comprises a conductive material, an adhesive material, or a combination thereof.
  • 12. The electron emission source as claimed in claim 9, wherein the film structures are curved film structures, long-strip film structures, or a combination thereof.
  • 13. The electron emission source as claimed in claim 9, wherein the thickness of the film structures is between 0.005 μm and 0.1 μm.
  • 14. The electron emission source as claimed in claim 9, wherein the thickness of the film structures is between 0.005 μm and 0.05 μm.
  • 15. The electron emission source as claimed in claim 9, wherein the lateral height of the film structures is between 0.5 μm and 4.0 μm.
  • 16. The electron emission source as claimed in claim 9, wherein the lateral height of the film structures is between 0.9 μm and 2.0 μm.
  • 17. A field emission display, comprising: an upper substrate with a phosphor layer and an anode layer; anda lower substrate with an electron emission layer and a cathode layer, the electron emission layer being closely adjacent to the cathode layer;wherein the electron emission source layer comprises a composition of diamond-like carbon flakes with a plurality of micro-scale film structures.
  • 18. The field emission display as claimed in claim 17, wherein the wherein the composition further comprises a conductive material, an adhesive material, or a combination thereof.
  • 19. The field emission display as claimed in claim 17, wherein the film structures are curved film structures, long-strip film structures, or a combination thereof.
  • 20. The field emission display as claimed in claim 17, wherein the lateral height of the film structures is between 0.5 μm and 4.0 μm.
  • 21. The field emission display as claimed in claim 17, wherein the lateral height of the film structures is between 0.9 μm and 2.0 μm.
  • 22. The field emission display as claimed in claim 17, wherein the thickness of the film structures is between 0.005 μm and 0.1 μm.
  • 23. The field emission display as claimed in claim 17, wherein the thickness of the film structures is between 0.005 μm and 0.05 μm.
  • 24. The field emission display as claimed in claim 17, further comprising a gate electrode layer disposed between the cathode plate and the anode plate, the gate electrode layer being a plurality of gate electrodes.
  • 25. The field emission display as claimed in claim 17, wherein the upper substrate further comprises a mask layer closely adjacent to the phosphor layer.
Priority Claims (1)
Number Date Country Kind
095121848 Jun 2006 TW national