Electron gun for a cathode ray tube with electrical conductors welded to bracket base, and cathode ray tube provided with such a gun

Information

  • Patent Grant
  • 6548953
  • Patent Number
    6,548,953
  • Date Filed
    Wednesday, October 25, 2000
    23 years ago
  • Date Issued
    Tuesday, April 15, 2003
    21 years ago
Abstract
An electron gun (1) for use in a cathode ray tube has brackets (20) connecting grids (2, 3, 4, 5, 6) to insulator rods (10). Electric conductors (11) extending to contact pins (12) embedded in a glass flange (13) are welded to a base (21) of the brackets (20). Legs (25) extend from the base (21) and are welded to the grids (2, 3, 4, 5, 6). Lugs (26) extend from the base (21) in opposite directions and are embedded in the glass rods (10). The brackets (20) provides stability to the grids (2, 3, 4, 5, 6), thereby preventing varying properties of guns (1) from one batch. The cathode ray tube is provided with the gun (1).
Description




BACKGROUND OF THE INVENTION




The invention relates to an electron gun for a cathode ray tube, comprising:




insulator rods in the longitudinal direction l of the row, aside from the row of grids, which insulator rods maintain the grids positioned with respect to each other;




metal brackets having a base and juxtaposed legs on sides of the base, said legs of each bracket being welded to the lateral wall of a respective bush-shaped grid and being embedded in a respective insulator rod by means of their lugs, which lugs face away from the legs.




The invention also relates to a cathode ray tube provided with such an electron gun.




An electron gun of this type is known from EP-A-0 453 978.




It is important for the sharpness of the image, which is produced by means of the gun in a cathode ray tube, that the grids of the gun are mutually aligned within narrow tolerances. To this end, the grids of the gun are mechanically secured to each other by means of insulator rods of, for example, glass, while they are maintained aligned with respect to each other by means of, for example, a jig. After mechanical assembly of the gun, electric conductors are secured to the grids, which conductors are connected to contact pins embedded in an insulating, for example glass, flange. At a later stage, a fuse is made at this flange with the neck of a cathode ray tube.




The known electron gun is manufactured by first embedding the metal brackets in the insulator rods, by subsequently welding the brackets to the bush-shaped grids while maintaining them aligned with respect to each other and by subsequently welding the electric conductors to the grids.




The brackets of the known electron gun have their legs on the shorter sides of the base. The legs are outwardly flanged and welded joints with the grids are realized on the flanged portions, aside from the insulator rods. The base extends transversely to the insulator rods and is entirely shielded by an insulator rod. The lugs embedded in an insulator rod are bent from the plane of the base on its longer sides and face away from the legs.




Another electron gun known from the quoted document has U-shaped brackets. The base of these brackets completely engages the grids and is welded thereto. The legs themselves are embedded in the insulator rods. The brackets have no lugs.




Yet another electron gun known from this document also has U-shaped brackets whose legs are outwardly flanged. The base of the brackets is completely embedded in the insulator rods. Welded joints with the grids are realized on the flanged portions of the legs which project laterally from the insulator rods. Also these brackets have no lugs.




With the construction of the known electron gun described in the opening paragraph, it is envisaged, likewise as with the two other known electron guns, to prevent differences in size and mutual position of the grids in electron guns from one batch. Such differences affect the properties of the electron gun, notably the sharpness of the image given by a cathode ray tube provided with the electron gun.




It is a drawback of the known electron guns there is still a relatively large spread of the properties of the guns from one batch. This spread might lead to deformation of the grids during assembly of the electron guns when a first bracket embedded in an insulator rod already makes contact with a first grid while the insulator rod must still be further moved towards the grids so as to bring the other brackets into contact with the other grids.




SUMMARY OF THE INVENTION




It is an object of the invention to provide an electron gun of the type described in the opening paragraph in which the risk of spread of properties of guns from one batch is obviated.




According to the invention, this object is achieved in that the base of the brackets extends as far as the side of the relevant insulator rod, and in that electric conductors are welded to the base, which electric conductors are connected to contact pins embedded in an insulating flange.




The invention is based on the recognition that deformations of the grids and hence disturbance of their aligned position may be the result when the conductors are welded to the grids themselves, as is the case in the known electron gun. In the electron gun according to the invention, this is obviated in that the conductors are welded to the base of the brackets. The brackets stiffen the grids and, during welding, constitute a mechanical and thermal buffer for the grids themselves. Moreover, the electron gun may be made in a conventional manner by welding the brackets to the grids prior to the alignment step. The local thermal and mechanical load of the grids resulting from the welding operation then occurs prior to the alignment. Another advantage is that the grids are then still accessible internally and externally so that not only laser welding but also, for example, resistance welding is still possible.




Individual guns of a batch of electron guns according to the invention have mutually different properties to a small extent only and are substantially equal for practical applications.




The legs of the brackets may extend in the longitudinal direction l of the row, for example, parallel to the insulator rods. However, it is favorable when the legs are transverse to the longitudinal direction l of the row. The legs then have a relatively large width and a relatively long contact with the grid. Welds can then be made on the grid at locations which are spaced far apart on each of the two legs so that the grid is mechanically strengthened to a large extent.




To this end, it is favorable when the base has longer sides and the legs have a width which essentially corresponds to the longer sides of the base. Then they have a relatively long contact line with the grids.




The lugs of the brackets may be situated in areas transverse to the legs, for example, along sides of the base and connected thereto. However, it is favorable when the lugs are cut loose from the base and are bent outwards, for example, transverse to the longer sides of the base and leaving an opening in the base. This embodiment limits the quantity of material for the brackets.




In a variant of this embodiment, the lugs extend in alignment with the legs. This variant has the advantage that the lugs are spaced far apart, just as far as the legs, and the brackets yield a very stable coupling with the insulator rods. An important advantage is, however, the simplicity of manufacture of the brackets. When an in-plano of the brackets is obtained by means of, for example, punching from, for example, sheet material, bending in only one direction needs to take place only twice for realizing this variant so as to bend the legs, and simultaneously the lugs, from the plane of the base. Moreover, the two bending operations may be easily performed simultaneously in one operating step. This variant is superior to the bracket of the known electron gun, both as far as material quantity and simplicity of manufacture and function are concerned.




It is favorable when the brackets extend on both sides as far as the sides of the insulator rod. It is then possible to connect the electric conductors on the one or the other side of the one or the other insulator rod to the brackets and hence space each conductor relatively far apart from the other.




It is favorable when each leg of the brackets is entirely located in a flat plane so that they do not have any flanged end portions. In this embodiment, the brackets can only be secured to the grids by means of butt-welding. In contrast to welding on flanged portions of the legs, the brackets then give the grids great stiffness and stability. Furthermore, the material quantity required for the brackets is smaller and their manufacture is simpler.




It is favorable when the insulator rods consist of glass.




The electron gun according to the invention may be designed for generating only one electron beam in a monochrome cathode ray tube, or for generating three electron beams in a multichrome cathode ray tube. In such a cathode ray tube, a multitude of colors is generated by means of phosphors in three colors, for example, red, green and blue.




The cathode ray tube according to the invention may be a monochrome tube or a multichrome tube. The tube may be intended for use as a computer monitor, in a television receiver, or in an oscilloscope.




These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.











BRIEF DESCRIPTION OF THE DRAWING




In the drawing:





FIG. 1

is a diagrammatic perspective view of the electron gun;





FIG. 2

is a detail of the electron gun of

FIG. 1

, partly in an exploded view;





FIG. 3

is a perspective view of the bracket shown in

FIGS. 1 and 2

;





FIG. 4

is a side elevation of the cathode ray tube with the electron gun shown in

FIG. 1

, partly broken away.











DESCRIPTION OF THE PREFERRED EMBODIMENT




In

FIG. 1

, the electron gun


1


for a cathode ray tube is provided with bush-shaped grids


2


,


3


,


4


,


5


,


6


having a bottom wall


7


and, extending therefrom, a circumferential lateral wall


8


. The grids


2


,


3


,


4


,


5


,


6


are arranged in a row


9


having a longitudinal direction l, with the bottom walls


7


transverse to the row


9


. Insulator rods


10


, of glass in the Figure (see also FIG.


2


), are present in the longitudinal direction l of the row


9


, aside from the row


9


of grids


2


,


3


,


4


,


5


,


6


. The insulator rods


10


maintain the grids


2


,


3


,


4


,


5


,


6


positioned with respect to each other. The electron gun also has metal brackets


20


(see also

FIGS. 2 and 3

) with a base


21


and juxtaposed legs


25


on sides


22


of the base


21


. The legs


25


of each bracket


20


are welded to the lateral wall


8


of a bush-shaped grid


2


,


3


,


4


,


5


,


6


, respectively. They have lugs


26


with which they are embedded in a respective insulator rod


10


. The lugs


26


face away from the legs


25


. The electron gun shown supplies three electron beams during operation, so that it is suitable for use in a color display tube.




The base


21


of the brackets


20


extends as far as the side of the relevant insulator rod


10


, and electric conductors


11


are welded to the base


21


. Welding spots are denoted by x in FIG.


1


. The conductors are connected to contact pins


12


which are embedded in an insulating flange


13


.




In the embodiment shown, the legs


25


are transverse to the longitudinal direction l of the row


9


.




The base


21


has longer sides


22


and, as is apparent from

FIGS. 2 and 3

, the legs


25


have a width which essentially corresponds to the longer sides


22


of the base


21


.




For the sake of clarity,

FIG. 2

shows a situation which does not occur in the manufacture of the electron gun. Grid


3


is provided with brackets


20


, whereas grid


4


is not yet provided with brackets. One bracket


20


is embedded in an insulator rod


10


by means of its lugs


26


, whereas the other bracket is not yet embedded in the second rod


10


.




As is apparent from

FIGS. 2 and 3

, the lugs


26


are cut loose from the base


21


and are bent outwards. The lugs


26


extend in alignment with the legs


25


. When the in-plano of the bracket is obtained by means of, for example, punching from sheet material and the in-plano is bent around the longer sides


22


of the base


21


so as to place the legs


25


transverse to the base


21


, the lugs


26


raise themselves automatically.





FIG. 3

shows that each lug


26


has a recess


27


. The recess


27


widens from the end of the lug


26


so that the recess


27


has a swallowtail shape. The lugs


26


thus interlock with the insulator rods


10


(FIGS.


1


and


2


).




It is apparent from FIG.


2


and also from

FIG. 3

that, due to the symmetry of the shown brackets


20


, the brackets


20


extend on both sides as far as the sides of the insulator rod


10


. The insulator rods


10


are only a little bit wider than the lugs


26


. Each leg


25


of the brackets


20


is entirely located in a flat plane.




In the embodiment shown, the brackets


20


have butt welds on the grids


2


,


3


,


4


,


5


,


6


. The legs


25


are transverse to the lateral walls


8


and the legs


25


have a relatively large width and a relatively long contact line with the lateral walls


8


. Consequently, the brackets


20


give the grids


2


,


3


,


4


,


5


,


6


great stiffness and stability.




The cathode ray tube of

FIG. 4

has a screen


31


, an inner surface of which has a coating


32


with areas provided with blue, green and red luminescing material. During operation, these areas are impinged by electron beams


37


,


38


and


39


via apertures in a shadow mask


33


. The screen


31


is fused to a cone


34


having a neck


35


with which the flange


13


of the electron gun


1


is fused. A deflection coil


36


guides the electron beams


37


,


38


and


39


towards their target on the screen


31


. The tube


31


shown is a color display tube with the threefold electron gun


1


.



Claims
  • 1. An electron gun for a cathode ray tube comprising:bush-shaped grids, each having a bottom wall and, extending therefrom, a circumferential lateral wall, the grids being arranged in a row having a longitudinal direction l, with the bottom walls transverse to the row; insulator rods extending in the longitudinal direction l of the row and alongside the row, said insulator rods maintaining the grids positioned with respect to each other; metal brackets having a base and juxtaposed legs on sides of the base, the legs of each said bracket being welded to the lateral wall of a respective one of the bush-shaped grids and being embedded in a respective one of the insulator rods by means of lugs extending from the brackets, said lugs facing away from the respective legs, the base of each of the brackets extending as far as the side of the respective insulator rod, and electric conductors being welded to the bases and electrically connected to contact pins embedded in an insulating flange.
  • 2. An electron gun as claimed in claim 1, characterized in that the legs are transverse to the longitudinal direction l of the row of the grids.
  • 3. An electron gun as claimed in claim 2, characterized in that the base has longer sides and the legs have a width which essentially corresponds to the longer sides of the base.
  • 4. An electron gun as claimed in claim 1, characterized in that the lugs are cut loose from the base and are bent outwards.
  • 5. An electron gun as claimed in claim 2, characterized in that the lugs extend in alignment with the legs.
  • 6. An electron gun as claimed in claim 1, characterized in that the brackets extend on both sides as far as the sides of the insulator rod.
  • 7. An electron gun as claimed in claim 1, characterized in that each said leg of the brackets is entirely located in a flat plane.
  • 8. A cathode ray tube provided with the electron gun as claimed in claim 1.
Priority Claims (1)
Number Date Country Kind
99203539 Oct 1999 EP
US Referenced Citations (4)
Number Name Date Kind
3838306 Jenne, Jr. Sep 1974 A
4305018 Paridaens Dec 1981 A
4786842 Shimoma et al. Nov 1988 A
5479067 van der Wilk et al. Dec 1995 A
Foreign Referenced Citations (1)
Number Date Country
0453978 Oct 1991 EP