The present invention relates generally to ionization sources that provide ions to ion processing devices such as ion traps for applications such as mass spectrometry. More specifically, the invention relates to electron sources that provide electron beams to such ionization sources.
Analytical processes such as mass spectrometry produce information acquired by processing charged species of sample analyte materials. The charged species are produced by ionizing the sample materials. Certain popular techniques for ionizing sample materials utilize a beam of energetic electrons. These techniques include electron ionization or impact (EI) and chemical ionization (CI). EI entails ionizing sample materials by transferring energy from the electrons to sample materials. CI entails ionizing a reagent gas by transferring energy from the electrons, and then ionizing sample materials by reactions with the ionized reagent gas. An electron source that includes a heated thermionic electrode, typically in the form of a filament, may be employed to produce the electron beam. Ion guiding techniques are employed to control the electron beam and focus the beam into an ionization chamber containing the typically gas-phase sample material. The chamber may be external to an ion processing device such as an ion trap or may be within the ion processing device.
The operation of an ion processing device, particularly a pulsed-operation device such as an ion trap, includes periods during which ionization is performed and periods during which ionization is not desired. Electrical circuitry communicates with the thermionic electrode as well as other electrodes utilized to control the electron beam. Depending on the configuration, the electron beam may be gated ON and OFF, adjusted between a HIGH state in which the electrons have sufficient energy to ionize sample material and a LOW state in which their energy is not sufficient to do so, or run continuously with the direction of the beam alternating toward and away from the ionization chamber. In all such configurations, control over and consistency of the electron emission current are desirable. Accordingly, the electrical circuitry associated with the electron source is typically capable of regulating the heating current passing through the thermionic electrode to maintain the total electron current at some constant, predetermined value.
Unfortunately, various components of the electron source are prone to becoming fouled with contaminating material, particularly when operating the CI mode of ionization. The contaminating material may be electrically conductive and thus may engender leakage currents. Leakage currents can cause several problems, including reducing the total emission current intended to be produced by the electron source, increasing electrical and/or photon noise, impairing the function of the emission current regulator and, more generally, impairing the accuracy and effectiveness of the associated ionization source.
In view of the foregoing, it would be advantageous to provide methods and apparatus that prevent, suppress, reduce, or eliminate leakage currents in electron sources, particular electron sources employed in conjunction with ion sources.
To address the foregoing problems, in whole or in part, and/or other problems that may have been observed by persons skilled in the art, the present disclosure provides methods, processes, systems, apparatus, instruments, and/or devices, as described by way of example in implementations set forth below.
According to one implementation, an electron source comprises a first electrode, a second electrode, a thermionic element interposed between and electrically isolated from the first electrode and the second electrode, and a guard electrode interposed between and electrically isolated from the first electrode and the second electrode.
According to another implementation, the thermionic element and the guard electrode are at substantially the same voltage, and the first electrode and the second electrode are at voltages different from the voltage on the thermionic element and the guard electrode.
According to another implementation, the electron source comprises an insulating material isolating the guard electrode from the first electrode, the second electrode and the thermionic element. The guard electrode has a first coefficient of thermal expansion and the insulating material has a second coefficient of thermal expansion different from the first coefficient of thermal expansion.
According to another implementation, an electron source comprises a first electrode, a second electrode, a thermionic element interposed between and electrically isolated from the first electrode and the second electrode, and a thermal expansion component interposed between and electrically isolated from the first electrode and the second electrode.
According to another implementation, the thermal expansion component is electrically conductive.
According to another implementation, the thermal expansion component includes a guard electrode, and the guard electrode and the thermionic element are at substantially the same voltage.
According to another implementation, the electron source comprises an insulating material isolating the thermal expansion component from the first electrode, the second electrode and the thermionic element. The thermal expansion component has a first coefficient of thermal expansion and the insulating material has a second coefficient of thermal expansion different from the first coefficient of thermal expansion.
According to another implementation, a method is provided for operating an electron source. A first voltage is applied to a thermionic element interposed between a first electrode and a second electrode to produce a current of emitted electrons from the thermionic element. A second voltage is applied, at substantially the same magnitude as the first voltage, to a guard electrode interposed between the first electrode and the second electrode.
According to another implementation, a voltage potential is applied between the first electrode and the second electrode to generate an electric field between the first electrode and the second electrode. The voltage potential may be adjusted to control the direction of the emitted electrons.
According to another implementation, a method is provided for operating an electron source. A first voltage is applied to a thermionic element interposed between a first electrode and a second electrode to cause emission of electrons from the thermionic element. A thermal expansion element interposed between the first electrode and the second electrode is heated to cause the thermal expansion element to expand in thickness.
According to another implementation, the heating is cycled to cause the thermal expansion element to alternately expand and contract.
In general, the term “communicate” (for example, a first component “communicates with” or “is in communication with” a second component) is used herein to indicate a structural, functional, mechanical, electrical, optical, magnetic, ionic or fluidic relationship between two or more components (or elements, features, or the like). As such, the fact that one component is said to communicate with a second component is not intended to exclude the possibility that additional components may be present between, and/or operatively associated or engaged with, the first and second components.
The known electron emitter device 100 includes a thermionic filament 120 that is supported between two filament posts 122 and 124. The filament 120 may be formed as a strip (ribbon) or a wire. The filament 120 may be constructed of any suitable refractory material such as tungsten, rhenium, or a compound, alloy or solid mixture containing a refractory material and that is capable of emitting electrons at or above a critical temperature. The filament posts 122 and 124 are supported in a block of electrically insulating material 130. The filament posts 122 and 124 extend for a distance beyond a face 132 of the insulating block 130 such that the filament 120 is positioned at a distance from this face 132. A top electrode 162 is disposed on one side of the insulating block 130 and a bottom electrode 164 is disposed on an opposite side of the insulating block 130. The top electrode 162 and the bottom electrode 164 extend for a distance beyond the face 132 of the insulating block 130 such that the filament 120 is positioned between respective portions of the top electrode 162 and the bottom electrode 164.
In operation, a suitable electrical circuit (not shown) applies a filament bias voltage Vfilament (e.g., typically −70 V for organic molecules) to the filament 120 to produce a heating current sufficient to cause thermionic emission of electrons from the filament 120 in a known manner. The electrical circuit also applies a voltage potential V1 (e.g., ±124 V) to the top electrode 162, and a voltage potential V2 (e.g., ±124 V) to the bottom electrode 164 to direct an electron beam 166 in the direction indicated in
To improve the symmetry of the electric field between the top electrode 162 and the bottom electrode 164 during the reversed-polarity stage in which the electron beam 166 is directed away from the bottom electrode 164, the top electrode 162 may likewise have an aperture 170 of the same shape and position as the aperture 168 of the bottom electrode 164. It will also be noted that, apart from the opposite polarities, the magnitudes of the respective voltages V1 and V2 applied to the top electrode 162 and the bottom electrode 164 may generally be the same if the filament 120 is interposed equidistantly between the top electrode 162 and the bottom electrode 164. Otherwise, the respective magnitudes may need to be adjusted differently to optimize operation during the ON and OFF stages of ionization.
The electron emitter device 100 illustrated in
As schematically illustrated in
By way of example, the implementations of electron sources and related components, ionization devices and methods described below are provided to address these problems.
The structural components 322 and 324 are supported, surrounded or encased by a body or arrangement of electrically insulating material 330. The insulating material 330 may have a unitary construction that includes one portion 334 generally disposed on the first side 302 of the thermionic element 320 and structural components 322 and 324 and another portion 336 generally disposed on the second side 304 of the thermionic element 320 and structural components 322 and 324. Alternatively, the insulating material 330 may include one or more blocks, substrates, layers, portions or the like as needed to electrically isolate the thermionic element 320 from other components of the electron source 300. For instance, the thermionic element 320 and the structural components 322 and 324 may be considered as being interposed between a first or upper portion 334 of insulating material 330 and a second or lower portion 336 of insulating material 330. The structural components 322 and 324 may generally extend for a distance beyond a face or side 332 of the insulating material 330 such that the thermionic element 320 is positioned at a distance from this face 332.
A first or upper electrode 362 is disposed on the first side 302 of the thermionic element 320 and spaced at a distance from the thermionic element 320, and a second or lower electrode 364 is disposed on the second side 304 of the thermionic element 320 and spaced at a distance from the thermionic element 320. The first electrode 362 and the second electrode 364 may extend for a distance beyond the face 332 of the insulating material 330 such that the thermionic element 320 is positioned between respective portions of the first electrode 362 and the second electrode 364. Accordingly, a region 372 in space is defined between the first electrode 362 and the second electrode 364 in which electrons may be thermionically emitted and subjected to controlled electrical fields. A voltage potential may be applied between the first electrode 362 and the second electrode 364 to control the excursions of the electrons emitted from the thermionic element 320. In some implementations, the first electrode 362 and the second electrode 364 may be operated alternatively as repellers and lenses in the known manner of pulsed ionization devices.
The first electrode 362 and the second electrode 364 may be constructed from any electrically conductive material and have any shape suitable for applying an electrical field for controlling an electron beam 366 emitted from the thermionic element 320. In some implementations, the first electrode 362 and the second electrode 364 are generally planar, and may be shaped as flat or substantially flat plates. The thermionic element 320 may be generally equidistantly spaced from the first electrode 362 and the second electrode 364, or alternatively may be positioned closer to one of these electrodes 362 or 364 than to the other electrode 364 or 362. The second electrode 364 may have an aperture 368 through which the electron beam 366 is directed into an ionization chamber (not shown), and the first electrode 362 may likewise have an aperture 370 to improve symmetry as previously noted.
As also illustrated in
To electrically isolate the thermionic element 320 from the guard electrode(s) 374 and 376, the first portion 334 of the insulating material 330 is interposed between the guard electrode 374 and the thermionic element 320 and structural components 322 and 324 and the second portion 336 of the insulating material 330 is interposed between the guard electrode 376 and the thermionic element 320 and structural components 322 and 324. To electrically isolate the first electrode 362 and second electrode 364 from the guard electrode(s) 374 and 376, respectively, additional insulating material may be provided. In the example specifically illustrated in
A suitable electrical circuit, which will be referred to as an electron emission controller (not shown), may be provided that includes one or more power supplies communicating with the thermionic element 320, the first electrode 362, the second electrode 364, and the guard electrode(s) 374 and 376. In operation, the electron emission controller applies a voltage bias Vfilament to the thermionic element 320 to produce a heating current sufficient for inducing thermionic emission, as well as a voltage potential V1 to the first electrode 362 and a voltage potential V2 to the second electrode 364 at appropriate magnitudes and polarity to control the direction of the resulting electron beam 366 in a manner similar to that previously described. In addition, the electron emission controller may also apply the same or substantially the same voltage bias Vfilament to the guard electrode(s) 374 and 376. The electron emission controller may include circuitry for regulating the heating current such that the total electron current emitted from the thermionic element 320 is maintained at a constant, predetermined value, such as by operating voltage regulators and/or current limiters as appreciated by persons skilled in the art.
The electron source 300 described above and illustrated by example in
In the non-limiting example illustrated in
As a further non-limiting example, the insulating material 330 has a coefficient of thermal expansion of about 1.0×10−6° C.−1 or less, and the guard electrode(s) 374, 376 has a linear coefficient of thermal expansion that is significantly greater, for example about an order of magnitude greater. In another example, the guard electrode(s) 374, 376 has a linear coefficient of thermal expansion of about 1.0×10−5° C.−1 or greater, and the insulating material 330 has a coefficient of thermal expansion of about 5.0×10−7° C.−1 or less. In another example, the guard electrode(s) 374, 376 has a linear coefficient of thermal expansion ranging from about 20×10−6 to about 25×10−6° C.−1, and the insulating material 330 has a coefficient of thermal expansion ranging from about 1.0×10−7 to about 5.0×10−7° C.−1.
The thermionic element 320 may be turned ON and OFF as part of the normal operation of the associated ion source. This causes the temperature of the various components of the electron source 500 to change over a large range. By providing one or more guard electrode(s) 374, 376 or any other suitably located thermal expansion element to serve as an expansion joint, the implementation illustrated in
It will be noted that the advantages provided by the implementations described above, such as preventing loss of regulation, reducing noise, and eliminating or at least minimizing leakage current, extend beyond applications entailing pulsed ionization. Any ion source, including those that provide an electron beam on a continuous basis and those that gate an electron beam between HIGH and LOW or ON and OFF states, may be adversely affected by leakage currents. For instance, an electron source of any given type may be set to provide an electron emission at 100 μA but may actually operate with a leakage of 20 μA such that the effective emission is only 80 μA. Any such electron source would benefit from cleaner current emission and reduced leakage as a result of practicing the implementations described above such as providing a guard electrode and/or an expansion joint. Therefore, the implementations described in the present disclosure are not limited to pulsed ionization applications.
Additional implementations may include combinations of one or more steps illustrated in
The MS system 800 includes an electron source 802 that may be configured like the electron source 300 or 500 described above and illustrated in
After the sample material is ionized in the ionization chamber 804, the charged species are directed through suitable ion optics 812 into any suitable ion processing device 814 such as an ion trap. In some implementations, instead of employing an external ionization chamber 804, the ion-occupied volume within the ion processing device 814 may serve as the ionization chamber. As part of such in-trap ionization techniques, an AC field may be applied within the ion processing device 814 in a known manner to increase the kinetic energy of the incoming electron beam to a level sufficient for ionizing the sample material. The ion processing device 814 may be employed in any desired manner, after which selected ions may be directed to ion optics and detector 816 for measurement. The data from the resulting signals may be employed to generate mass spectra in a known manner. As schematically illustrated in
It will be understood that the methods and apparatus described in the present disclosure may be implemented in an MS system 800 as generally described above and illustrated in
The subject matter described in the present disclosure may also find application to ion sources that provide ions for ion traps of the type that operate based on Fourier transform ion cyclotron resonance (FT-ICR). These types of ion traps employ a magnetic field to trap ions and an electric field to eject ions from the trap (or ion cyclotron cell). The subject matter may also find application to ion sources that provide ions for static electric traps such as described in U.S. Pat. No. 5,886,346. Apparatus and methods for implementing these ion trapping and mass spectrometric techniques are well-known to persons skilled in the art and therefore need not be described in any further detail herein.
It will be further understood that various aspects or details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation—the invention being defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
4403017 | Bind | Sep 1983 | A |
5543625 | Johnson et al. | Aug 1996 | A |
5756996 | Bier et al. | May 1998 | A |
5850084 | Holkeboer | Dec 1998 | A |
5886346 | Makarov | Mar 1999 | A |
6278121 | Laube et al. | Aug 2001 | B1 |
6294780 | Wells et al. | Sep 2001 | B1 |
6796143 | Clasen et al. | Sep 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20070132357 A1 | Jun 2007 | US |