Electronic adapter for electro-active spectacle lenses

Information

  • Patent Grant
  • 7527375
  • Patent Number
    7,527,375
  • Date Filed
    Monday, June 11, 2007
    17 years ago
  • Date Issued
    Tuesday, May 5, 2009
    15 years ago
Abstract
An adapter for a spectacle frame is disclosed which is configured for enabling the spectacle frame to operate and control electro-active lenses housed therein. In particular, the spectacle frame may allow electro-active lenses housed therein to focus and be controlled both automatically and manually with heretofore unrealized results.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to an adapter for a spectacle frame housing electro-active lenses. Specifically, this invention relates to an adapter configured for enabling a spectacle frame to operate and control electro-active lenses housed therein without the need to either uniquely design and manufacture the spectacle frame or to perform undue modifications of an existing spectacle frame. In particular, the spectacle frame may allow electro-active lenses housed therein to focus and be controlled both automatically and manually with heretofore unrealized results.


2. Description of the Related Art


With the invention of electro-active spectacle lenses that provide dynamic changes in focus there is a desire to engineer these lenses such that they can be compatible with most, if not all, pre-existing spectacle frame designs. To accomplish such a task, all of the components required to operate the electro-active functionality must be incorporated either internally or externally to the body of the lens so that the lens can be mounted into any unmodified spectacle frame and still be both aesthetically acceptable and fully functional.


Historically, the optical industry has been structured in such a way that the patient selects his or her eyewear based largely on aesthetics that relate to frame comfort and appearance. Generally the frames are the first item selected in picking out prescription eyeware. Lenses, including tints, coatings, and optical design are usually picked second. Given the significant number of available frame styles, sizes, and colors, the manner in which the industry has historically functioned, and the desire of the consumer or patient to have a vast selection of frames to choose from, there is a desire to provide a means and system for near universal compatibility between the new electro-active lenses and existing frame designs.


Accordingly, there is now provided with this invention an improved spectacle frame adapted for housing electro-active lenses that effectively overcomes the aforementioned difficulties and longstanding problems inherent in the art. These problems have been solved in a simple, convenient, and highly effective way by which to control electro-active lenses.


SUMMARY OF THE INVENTION

According to one aspect of the invention, an adapter for an electro-active lens is disclosed, wherein the electro-active lens is housed in a spectacle frame and the electro-active lens has a first set of electrical contacts. The adapter is a separate element from the electro-active lens and has a second set of electrical contacts for providing an electrical signal to the electro-active lens through the first set of electrical contacts.


As will be appreciated by those persons skilled in the art, a major advantage provided by the present invention is enabling a spectacle frame to operate and control electro-active lenses housed therein without the need to either uniquely design and manufacture the spectacle frame or to perform undue modifications of an existing spectacle frame. The spectacle frame may allow electro-active lenses housed therein to focus and be controlled both automatically and manually with heretofore unrealized results. Additional objects of the present invention will become apparent from the following description.


The method and apparatus of the present invention will be better understood by reference to the following detailed discussion of specific embodiments and the attached figures which illustrate and exemplify such embodiments.





DESCRIPTION OF THE DRAWINGS

A specific embodiment of the present invention will be described with reference to the following drawings, wherein:



FIG. 1 is a diagrammatic representation of an example of an electro-active lens and its drive components.



FIG. 2A is a front view of a spectacle frame housing the adapter of the present invention.



FIG. 2B is a top view of a spectacle frame housing the adapter of the present invention.



FIG. 3A is a top view of the left temporal side of an embodiment of the electro-active spectacle lens of the present invention.



FIG. 3B is a top view of the top left temporal side of an embodiment of the adapter of the present invention.



FIG. 3C is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3D is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3E is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3F is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3G is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3H is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 3I is a top view of the left temporal side of another embodiment of the electro-active spectacle lens of the present invention.



FIG. 3J is a top view of the top left temporal side of another embodiment of the adapter of the present invention.



FIG. 4 is a front view of an embodiment of the right side of the electro-active spectacle lens and adapter of the present invention.



FIG. 5 is a front view of another embodiment of the right side of the electro-active spectacle lens and adapter of the present invention.



FIG. 6 is a front view of another embodiment of the right side of the electro-active spectacle lens and adapter of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT

The following preferred embodiment as exemplified by the drawings is illustrative of the invention and is not intended to limit the invention as encompassed by the claims of this application.


As shown in FIG. 1, as in all embodiments of the present invention, the electro-active spectacle lenses 100 contain an electro-active lens element 101 and drive electronics, including one or more focus sensors 102, all of which are embedded within the body of a lens 103 that act to correct refractive errors of the eye not associated with presbyopia. The drive electronics are contained within a driver. The driver may also include all necessary control components for providing the appropriate electrical signal for providing the proper optical power in the electro-active lens. The body of the lens may be either a finished blank (two optical quality surfaces) or a semi-finished blank (one optical quality surface). The focus sensors, drive electronics, and electro-active lens element may be typically attached to the anterior and/or posterior surface of a flexible but transparent star shaped substrate 104 where electrical connection is made via thin film transparent electrical leads 105 (such as, by way of example only, indium tin oxide, ITO). These thin film transparent electrical leads include connections 106 for an electrical power source. These thin film transparent electrical leads may also include connections for digital or analog signal transfer. In certain other embodiments, the power, source and signal connections may be of a different design where they are connected to the flexible substrate but contain non thin-film conductors, such as, by way of example only, fine gauge metal wire. This alternative design is such that the connection does not significantly interfere with the user's vision or the aesthetics of the lens. These power source and signal connections as well as the focus sensors and drive electronics are placed near the edge of the lens, near where the frame eye-wire and temple connect, such that when the lens is fitted within the frame, the power source, drive electronics, and focus sensors do not interfere with the vision of the user. Alternatively, the drive components may be placed distal from the electro-active lenses either in the spectacle frame, the temples, or in the adapter of the present invention.


In an embodiment of the invention shown in FIG. 2, the electro-active lens 201 with electro-active region 203 is edged (cut to the shape of the spectacle frame) using techniques well known in the art. The process of edging the lens acts to either partially or fully expose the electrical leads that connect to the power source. This edged lens is then combined with an electrical adapter 202 that, as shown in FIG. 3B, may contain one or more electrical power sources 305, one or more electrical switches 306 to provide manual control of the lenses to the user, and one or more sensors 307 that acts to detect the presence of the user (determine if spectacles are being worn). As an alternative design, the sensor 307 may also include the drive electronics 102 for the electro-active lens. The sensor 307 may also sense if the frame is opened. This adapter has electrical contacts 308 that correspond to the power source and signal electrical contacts 106 in the lens 201 such that when the adapter is placed between the spectacle lens and the eye wire of the spectacle frame, the pressure associated with securing the lens within the frame acts to make positive electrical contact between the lens and the adapter as well as physically secure the adapter to the spectacles. Components within the adapter are connected electrically by means of internal wiring 309. Power sources included within the adapter may be, by way of example only, disposable zinc-air batteries or rechargeable Li-ion or Li-polymer batteries. Manual switches included within the adapter may be, by way of example only, pressure switches, capacitive touch switches or optical proximity switches. Sensors to determine if the spectacles are being worn may be, by way of example only, optical proximity switches or accelerometers which, if activated, instruct the drive electronics to operate the focus sensors within the body of the lens. In this embodiment each of the lenses would be identical and would each require an individual adapter. The driver may provide an electrical signal for generating the appropriate amount of optical power in each of the electro-active lenses. The driver may also include a focusing sensor for determining the appropriate signal for the electro-active lenses.


As also shown in FIGS. 3A-3J, the use of such an adapter 202 may require, in certain embodiments, other machining steps in addition to edging where, by way of example only, one or more of a slot, groove, or notch 301 is machined into the body of the lens 201 such that robust physical and electrical connection is made between the frame, lens, and adapter. As the adapter would be placed near to where the frame eye-wire and temple connect, such a machining step may allow the adapter to be located-on the posterior surface 302 of the lens 201 and be mostly hidden from view by the temple hinge. Such a placement would be advantageous for preserving the aesthetic quality of the spectacles. It is preferable that the edge profile 303 of the adapter 202 match that (304) of the lens 201 such that a secure fit is guaranteed between the frame, lens, and adapter.


Embodiments of the adapter of the present invention may contain any of a combination of components. For example, as shown in FIG. 3B, the adapter may have an on/off switch, a power source, and a sensor for sensing the presence of the user. Alternatively, as shown in FIG. 3C, the adapter may only have a power source. Alternatively, as shown in FIG. 3D, the adapter may only have an on/off switch. Alternatively, as shown in FIG. 3E, the adapter may only have a sensor for sensing the presence of the user. As shown in FIG. 3F, the adapter may have an on/off switch, and a sensor for sensing the presence of the user. As shown in FIG. 3G, the adapter may have an on/off switch, and a power source. As shown in FIG. 3H, the adapter may have a power source and a sensor for sensing the presence of the user.


As further illustrated in FIGS. 3I and 3J, the electrical connection made between the frame, lens, and adapter may include a physical connection in which mating elements between the lens and the adapter are screwed to one another. As shown, the adapter may include screw threads 311 which secure into mating threads 310 in the lens. Of course, as is well known in the art, such physical connections can further include a wide variety of equivalents, for example, a bayonet-type connection, a detent, snap-like connection and etc. As is also well known in the art, the electrical connection may be made with a wide variety of electrical mating elements, for example, male/female connectors, plugs, sockets, pins, and the like.


The adapter may be positioned so that it simultaneously contacts the lens and the frame or, alternatively, it may be positioned so that it only contacts the lens and does not contact the frame. The adapter may be positioned so that it is located under and above the surface of the lens when it is in contact therewith. The adapter may be further positioned so that it is located near a periphery of the surface of the lens when it is in contact therewith.


One issue with the above embodiments is that each lens operates independently from the other. Therefore, the possibility exists that under certain operational conditions one lens may be triggered to operate while the other is not. To eliminate this problem a means for synchronizing the operation of the two lenses must be devised such that when one of the two lenses is activated, the other will be activated by default. In another embodiment of the invention the electrical adapters of the two lenses are connected by means of discrete signal conduit such as, by way of example only, one or more of a small gauge metal wire or optical fiber. Such signal conduits could be hidden in the gap between the frame eye wire and the lens as well as behind the bridge that joins the two lenses.


In another embodiment the two lenses are synchronized by means of a wireless optical connection designed to transmit data across the bridge as shown in FIG. 4. In this embodiment an infrared optical transceiver unit 401 is tethered to each adapter 202 by means of a flex circuit 402, which may be hidden between the superior eye-wire of the frame and the edged electro-active spectacle lens 201. The transceiver unit is preferred to be located at the location of where the superior vertical distance of each eye-wire allows for the best, unhindered optical communication between the IR transceivers. As with the adapter, an additional machining step may be required where, by way of example only, one or more of a slot, groove, or notch 403 is machined into the body of the lens such that a robust physical connection is made between the transceiver unit and the spectacles. Furthermore, such machining steps would allow the transceiver unit to be mounted to either the anterior or posterior surface of the lens.


In another embodiment the two lenses are synchronized by means of a wireless, radio frequency (RF) communication system as shown in FIG. 5. In this embodiment the electrical adapter 202 contains circuitry for an RF transceiver that is tethered to a flex circuit antenna 501 (for example only). This flex circuit antenna may be hidden between the frame eye wire and the edged spectacle lens 201.


In another embodiment the two lenses are synchronized by means of inductive coupling as shown in FIG. 6. In this embodiment the electrical adapter 202 contains circuitry for a pulsed current source that is tethered to multiple-turn coils of an electrical conductor made using flex circuit 601 (for example only). These flex circuit coils may be hidden between the frame eye wire and the edged spectacle lens. In this approach, current pulses in the coils of lens 1 generates a magnetic field which, by way of Faraday's law of induction, generates a current in the coils of lens 2, which is then be detected by the circuitry of the electrical adapter of lens 2. In this manner communication between the two lenses is enabled.


In another embodiment, the two lenses may be synchronized by means of ultrasonic signals transmitted over free space. In this embodiment the electrical adapter contains circuitry for an ultrasonic transceiver. Such an approach is advantageous in that no additional components are required to be tethered to the electrical adapter.


In yet another embodiment, the two lenses may be synchronized by means of vibrations transmitted through the spectacle frame. In this embodiment the electrical adapter contains a vibration transducer and detector that makes physical contact to the frame when the lenses, adapters, and frames are assembled. Transducers and detectors of vibrations may be made from, by way of example only, piezoelectric materials. Such an approach is advantageous in that no additional components are required to be tethered to the electrical adapter.


In order to simplify any of the above embodiments, only one lens could be outfitted with one or more focus sensors and a synchronization transmitter while the other lens would not include any focus sensors and only a synchronization receivers. In such an embodiment the lens with the focus sensor(s) would operate as the “master” while the other lens would operate as the “slave” and only operate when directed by the master. Such a one-way communication system would reduce power consumption (by eliminating synchronization transmitters and a focus sensors) and simplify synchronization, but at the expense of eliminating redundancy in the focus sensors.


Although the particular embodiments shown and described above will prove to be useful in many applications in the spectacle art and the electro-active lens art to which the present invention pertains, further modifications of the present invention will occur to persons skilled in the art. All such modifications are deemed to be within the scope and spirit of the present invention as defined by the appended claims.

Claims
  • 1. An adapter for an electro-active lens, wherein the electro-active lens is housed in a spectacle frame and the electro-active lens has a first set of electrical contacts, wherein said adapter is a separate element from the electro-active lens, and wherein said adapter has a second set of electrical contacts for providing an electrical signal to the electro-active lens through said first set of electrical contacts.
  • 2. The adapter of claim 1, further comprising a power source operatively connected to said second set of electrical contacts.
  • 3. The adapter of claim 2, further comprising a manually operable on/off switch connected to said power source.
  • 4. The adapter of claim 1, further comprising a sensor operatively connected to said second set of electrical contacts, wherein said sensor is for detecting if the electro-active lens is to be provided with the signal.
  • 5. The adapter of claim 4, wherein said sensor senses the presence of a user.
  • 6. The adapter of claim 5, wherein said sensor senses if the frame is opened.
  • 7. The adapter of claim 1, further comprising a driver operatively connected to said second set of electrical contacts, wherein said signal is for generating a predetermined optical add power to the electro-active lens.
  • 8. The adapter of claim 7, wherein said driver provides said signal for generating the appropriate amount of optical power in the electro-active lens.
  • 9. The adapter of claim 7, wherein said driver further comprises a focusing sensor for determining the appropriate signal for the electro-active lenses.
  • 10. The adapter of claim 1, wherein said first set of electrical contacts and said second set of electrical contacts further comprise electrical mating elements.
  • 11. The adapter of claim 1, further comprising a synchronizer operatively connected to the adapter for controlling one lens based upon the control of another lens.
  • 12. The adapter of claim 11, wherein said synchronizer comprises infrared optical transmission signals.
  • 13. The adapter of claim 11, wherein said synchronizer comprises RF transmission signals.
  • 14. The adapter of claim 11, wherein said synchronizer comprises an inductive coupling.
  • 15. The adapter of claim 11, wherein said synchronizer comprises a flexible circuit extending through the spectacle frame.
  • 16. The adapter of claim 11, wherein said synchronizer comprises ultrasonic transmission signals.
  • 17. The adapter of claim 11, wherein said synchronizer comprises vibration transmission signals.
  • 18. The adapter of claim 17, wherein said synchronizer comprises piezoelectric materials.
  • 19. The adapter of claim 1, wherein the adapter is for simultaneously contacting the lens and the frame.
  • 20. The adapter of claim 1, wherein the adapter is for contacting the lens without contacting the frame.
  • 21. The adapter of claim 1, wherein the adapter is located under and above the surface of the lens when in contact therewith.
  • 22. The adapter of claim 1, wherein the lens has a surface and the adapter is located near the periphery of said surface when in contact with the lens.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of Provisional Application U.S. Ser. No. 60/815,870, filed on Jun. 23, 2006 (and entitled Electronic Adapter For Electro-Active Spectacle Lenses That Enables Near Universal Frame Compatibility) which is incorporated in its entirety herein by reference.

US Referenced Citations (215)
Number Name Date Kind
2437642 Henroleau Mar 1948 A
2576581 Edwards Nov 1951 A
3161718 De Luca Dec 1964 A
3245315 Marks et al. Apr 1966 A
3309162 Kosanke et al. Mar 1967 A
3614215 Mackta Oct 1971 A
3738734 Tait et al. Jun 1973 A
3791719 Kratzer et al. Feb 1974 A
4062629 Winthrop Dec 1977 A
4152846 Witt May 1979 A
4174156 Glorieux Nov 1979 A
4181408 Senders Jan 1980 A
4190330 Berreman Feb 1980 A
4264154 Petersen Apr 1981 A
4279474 Belgorod Jul 1981 A
4300818 Schachar Nov 1981 A
4373218 Schachar Feb 1983 A
4395736 Fraleux Jul 1983 A
4418990 Gerber Dec 1983 A
4423929 Gomi Jan 1984 A
4457585 DuCorday Jul 1984 A
4461629 Legendre Jul 1984 A
4466703 Nishimoto Aug 1984 A
4466706 Lamothe, II Aug 1984 A
4529268 Brown Jul 1985 A
4537497 Shinohara et al. Aug 1985 A
4564267 Nishimoto Jan 1986 A
4572616 Kowel et al. Feb 1986 A
4577928 Brown Mar 1986 A
4601545 Kern Jul 1986 A
4609824 Munier et al. Sep 1986 A
4712870 Robinson et al. Dec 1987 A
4751691 Perera Jun 1988 A
4756605 Okada et al. Jul 1988 A
4772094 Sheiman Sep 1988 A
D298250 Kildall Oct 1988 S
4787733 Silva Nov 1988 A
4787903 Grendahl Nov 1988 A
4795248 Okada et al. Jan 1989 A
4813777 Rainville et al. Mar 1989 A
4818095 Takeuchi Apr 1989 A
4836652 Oishi et al. Jun 1989 A
4842400 Klein Jun 1989 A
4880300 Payner et al. Nov 1989 A
4890903 Treisman et al. Jan 1990 A
4904063 Okada et al. Feb 1990 A
4907860 Noble Mar 1990 A
4909626 Purvis et al. Mar 1990 A
4919520 Okada et al. Apr 1990 A
4921728 Takiguchi May 1990 A
4927241 Kuijk May 1990 A
4929865 Blum May 1990 A
4930884 Tichenor et al. Jun 1990 A
4944584 Maeda et al. Jul 1990 A
4945242 Berger et al. Jul 1990 A
4952788 Berger et al. Aug 1990 A
4955712 Barth et al. Sep 1990 A
4958907 Davis Sep 1990 A
4961639 Lazarus Oct 1990 A
4968127 Russell et al. Nov 1990 A
4981342 Fiala Jan 1991 A
4991951 Mizuno et al. Feb 1991 A
5015086 Okaue et al. May 1991 A
5030882 Solero Jul 1991 A
5050981 Roffman Sep 1991 A
5066301 Wiley Nov 1991 A
5067795 Senatore Nov 1991 A
5073021 Marron Dec 1991 A
5076665 Petersen Dec 1991 A
5089023 Swanson Feb 1992 A
5091801 Ebstein Feb 1992 A
5108169 Mandell Apr 1992 A
5114628 Hofer et al. May 1992 A
5130856 Tichenor et al. Jul 1992 A
5142411 Fiala Aug 1992 A
5150234 Takahashi et al. Sep 1992 A
5171266 Wiley et al. Dec 1992 A
5182585 Stoner Jan 1993 A
5184156 Black et al. Feb 1993 A
5200859 Payner et al. Apr 1993 A
5208688 Fergason et al. May 1993 A
5229797 Futhey et al. Jul 1993 A
5229885 Quaglia Jul 1993 A
5231430 Kohayakawa Jul 1993 A
5239412 Naka et al. Aug 1993 A
D342063 Howitt et al. Dec 1993 S
5305028 Okano Apr 1994 A
5306926 Yonemoto Apr 1994 A
5324930 Jech, Jr. Jun 1994 A
D350342 Sack Sep 1994 S
5352886 Kane Oct 1994 A
5359444 Piosenka et al. Oct 1994 A
5375006 Haas Dec 1994 A
5382986 Black et al. Jan 1995 A
5386308 Michel et al. Jan 1995 A
5424927 Schaller et al. Jun 1995 A
5440357 Quaglia Aug 1995 A
5443506 Garabet Aug 1995 A
5451766 Van Berkel Sep 1995 A
5459533 McCooeye et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5488439 Weltmann Jan 1996 A
5522323 Grupp Jun 1996 A
5552841 Gallorini et al. Sep 1996 A
5608567 Grupp Mar 1997 A
5615588 Gottschald Apr 1997 A
5654786 Bylander Aug 1997 A
5668620 Kurtin et al. Sep 1997 A
5682223 Menezes et al. Oct 1997 A
5683457 Gupta et al. Nov 1997 A
RE35691 Theirl et al. Dec 1997 E
5710615 Kitani Jan 1998 A
5712721 Large Jan 1998 A
5728155 Anello et al. Mar 1998 A
5739959 Quaglia Apr 1998 A
5777719 Williams et al. Jul 1998 A
5815233 Morokawa et al. Sep 1998 A
5815239 Chapman et al. Sep 1998 A
5861936 Sorensen Jan 1999 A
5877876 Birdwell Mar 1999 A
5900720 Kallman et al. May 1999 A
5949521 Williams et al. Sep 1999 A
5953098 Lieberman et al. Sep 1999 A
5956183 Epstein et al. Sep 1999 A
5963300 Horwitz Oct 1999 A
5971540 Ofner Oct 1999 A
5980037 Conway Nov 1999 A
5999328 Kurtin et al. Dec 1999 A
6040947 Kurtin et al. Mar 2000 A
6050687 Bille et al. Apr 2000 A
6069742 Silver May 2000 A
6086203 Blum et al. Jul 2000 A
6086204 Magnante Jul 2000 A
6095651 Williams et al. Aug 2000 A
6099117 Gregory Aug 2000 A
6115177 Vossler Sep 2000 A
6145987 Baude et al. Nov 2000 A
6188525 Silver Feb 2001 B1
6191881 Tajima Feb 2001 B1
6213602 Smarto Apr 2001 B1
6270220 Keren Aug 2001 B1
6271915 Frey et al. Aug 2001 B1
6305802 Roffman et al. Oct 2001 B1
6325508 Decreton et al. Dec 2001 B1
6350031 Lashkari et al. Feb 2002 B1
6390623 Kokonaski et al. May 2002 B1
6396622 Alden May 2002 B1
6437762 Birdwell Aug 2002 B1
6437925 Nishioka Aug 2002 B1
6464363 Nishioka et al. Oct 2002 B1
6491394 Blum et al. Dec 2002 B1
6501443 McMahon Dec 2002 B1
6554425 Roffman et al. Apr 2003 B1
6607271 Bar et al. Aug 2003 B2
6609794 Levine Aug 2003 B2
6614408 Mann Sep 2003 B1
6616275 Dick et al. Sep 2003 B1
6616279 Davis et al. Sep 2003 B1
6618208 Silver Sep 2003 B1
6626532 Nishioka et al. Sep 2003 B1
6631001 Kuiseko Oct 2003 B2
6682195 Dreher Jan 2004 B2
6709105 Menezes Mar 2004 B2
6709108 Levine et al. Mar 2004 B2
6738199 Nishioka May 2004 B2
6768536 Okuwaki et al. Jul 2004 B2
6774871 Birdwell Aug 2004 B2
6778246 Sun et al. Aug 2004 B2
6833938 Nishioka Dec 2004 B2
6840619 Dreher Jan 2005 B2
6851805 Blum et al. Feb 2005 B2
6857741 Blum et al. Feb 2005 B2
6871951 Blum et al. Mar 2005 B2
6883916 Menezes Apr 2005 B2
6886938 Menezes May 2005 B1
6893124 Kurtin May 2005 B1
6918670 Blum et al. Jul 2005 B2
6948818 Williams et al. Sep 2005 B2
6951391 Morris et al. Oct 2005 B2
6955433 Wooley et al. Oct 2005 B1
6956682 Wooley Oct 2005 B2
6986579 Blum et al. Jan 2006 B2
7008054 Kurtin et al. Mar 2006 B1
7009757 Nishioka et al. Mar 2006 B2
7018040 Blum et al. Mar 2006 B2
7019890 Meredith et al. Mar 2006 B2
7023594 Blum et al. Apr 2006 B2
7041133 Azar May 2006 B1
7085065 Silver Aug 2006 B2
7090348 Nason et al. Aug 2006 B2
7133172 Nishioka Nov 2006 B2
7159983 Menezes et al. Jan 2007 B2
7229173 Menezes et al. Jun 2007 B2
7290875 Blum et al. Nov 2007 B2
7396126 Blum et al. Jul 2008 B2
7404636 Blum et al. Jul 2008 B2
7475984 Blum et al. Jan 2009 B2
20020140899 Blum et al. Oct 2002 A1
20020149739 Perrott et al. Oct 2002 A1
20020186346 Stantz et al. Dec 2002 A1
20030183383 Azar Jan 2003 A1
20031511721 Lai et al. Aug 2003
20030210377 Blum et al. Nov 2003 A1
20040008319 Lai et al. Jan 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040117011 Aharoni et al. Jun 2004 A1
20040130677 Liang et al. Jul 2004 A1
20040179280 Nishioka Sep 2004 A1
20040196435 Dick et al. Oct 2004 A1
20040246440 Andino et al. Dec 2004 A1
20050737739 Meredith Apr 2005
20050124983 Frey et al. Jun 2005 A1
20060044510 Williams et al. Mar 2006 A1
20070159562 Haddock et al. Jul 2007 A1
20070258039 Duston et al. Nov 2007 A1
Foreign Referenced Citations (26)
Number Date Country
4223395 Jan 1994 DE
0 027 339 Apr 1981 EP
0154962 Sep 1985 EP
0 225 034 Jun 1987 EP
0233104 Aug 1987 EP
0237365 Sep 1987 EP
0 308 705 Mar 1989 EP
0 578 833 Jan 1994 EP
0 649 044 Apr 1995 EP
2170613 Aug 1986 GB
2169417 Jul 1987 GB
55-076323 Jun 1980 JP
61 156227 Jul 1986 JP
61 177429 Aug 1986 JP
1 237610 Sep 1989 JP
05-100201 Apr 1993 JP
11352445 Dec 1998 JP
WO-9201417 Feb 1992 WO
WO-9827863 Jul 1998 WO
WO-9927334 Jun 1999 WO
WO-03050472 Jun 2003 WO
WO-03068059 Aug 2003 WO
WO-04008189 Jan 2004 WO
WO-04015481 Feb 2004 WO
WO-04034095 Apr 2004 WO
WO-04072687 Aug 2004 WO
Related Publications (1)
Number Date Country
20070296918 A1 Dec 2007 US
Provisional Applications (1)
Number Date Country
60815870 Jun 2006 US