This invention relates to the field of electronic panel filters. In particular, it relates to features which facilitate the manufacture of such a filter and permitted it to operate with higher field potentials.
In the previous art, electronic air filters of the charge media type, a filter medium is positioned between metal screens and polarized by applying high voltage between these screens. In many cases, the high voltage supply is an integral part of the filter. Examples are my U.S. Pat. No. 4,549,887 and U.S. Pat. No. 4,828,586. These inventions effectively describe filters which have two outside grounded screens and an inside screen which is charged with high voltage. Between the screens there are pads of dielectric fibrous trapping material which becomes polarized by the electric field between the screens.
These filters are usually one or two inches thick and they get their power from a low voltage supply such as 24 volts which is usually available for the air-handling units. These filters use very little power, about 1½ watts to 2 watts. Their electronic system converts a low voltage input to high voltage, eg, approximately 7 KV to 12 KV. The high voltage creates an electrostatic field inside the filter and polarizes the fibrous media which then better attracts the dust from the air flow. The method of attaching the power supply electronics to the filter itself is one object of this invention.
The amount of voltage which can be applied between these screens is limited by the space between the screens. Typically for a one-inch thick filter, the applied voltage is approximately 7 kilovolts. If the voltage is increased beyond this, avalanche arcing has in the past occurred between the inside screen and the outside grounded screens. This produces a loud sparking noise. Avalanche discharge occurs when a small leakage starts which ionizes the air and generates a conductive path between the screens at one spot. This causes the charge on the inside screen to dissipate abruptly thus making the loud noise. The effect is intense because the inside screen and the outside screens form a capacitor with the dielectric media being the dielectric.
U.S. Pat. No. 5,573,577, by the same inventor, describes a similar filter where conductive strings are used in place of the inside screen. The purpose of using the strings is to provide internal ionization via the loose ends of the fibers. These strings feature loose fiber ends and they are rendered conductive by some means. In this case, avalanche discharge is very minimal because the strings, by their small total surface have very small capacitance. In practice, they are about 1¼ inches apart. The actual area covered by the strings is much smaller as compared to the area covered by an equivalent screen. This is why the strings have very small capacitance.
Another object of my invention is therefore to provide a method of allowing a higher voltage to be employed without the presence of severe avalanche discharge.
By reducing avalanche discharge in these filters and enabling application of higher voltage between the screens, a higher efficiency of the filter is provided.
The invention in its general form will first be described, and then its implementation in terms of specific embodiments will be detailed with reference to the drawings following hereafter. These embodiments are intended to demonstrate the principle of the invention, and the manner of its implementation. The invention in its broadest and more specific forms will then be further described, and defined, in each of the individual claims which conclude this Specification.
The invention herein is based on providing a charged screen in charged media type filters wherein the screen is made of a resistive material, such as a plastic mesh, which is made to have high resistance to current flow. Thus the charged middle screen of a composite filter assembly as described above is made of resistive material and it is charged by high voltage of the order of 7 to 12 KV with respect to the grounded outer screens. The high resistance nature of the middle screen limits large amounts of current from flowing in cases where leakage gives rise to the formation of an arc. By using a highly resistive screen, the area covered by the screen can be the same as with a metal screen but because of the screen's high resistivity, avalanche discharge is reduced eliminated. In this way, we get good polarization, because of the large area covered with little or no avalanche discharge.
It has been found that if a charged screen has high resistivity then, upon the commencement of the formation of an arc, a small leakage current passing between the charged screen and the outside grounded screens causes the voltage at the point of the arc to decrease. A voltage drop occurs when current flows through the resistance. (V=IR). The presence of resistance prevents a large discharge from being sustained because the voltage across the arc immediately drops.
Another feature arising from the use of a high resistivity screen is that the resistance prevents the innate capacitance of the rest of the screen from providing high current to flow to the discharge site, consequently, by using resistive charged screens, the applied voltage can be increased thus improving the efficiency of the filter. By using a highly resistive screen, the area covered by the screen is the same as with a metal screen but because of the screen's high resistivity, avalanche discharge is eliminated. In this way, we get good polarization, because of the large area covered with no avalanche discharge.
According to a further feature of the invention, the electronics box that contains the high voltage power supply is made to interfit with and act as part of the channel formed along one side of the filter. The channel/box combination collectively acts as an extension to the filter and ensures that the filter unit has the shape of a completed rectangle so that, when it is installed in an air handling unit, it will seal properly directing air to pass only through the filter medium.
The foregoing summarizes the principle features of the invention. The invention may be further understood by the description of the preferred embodiments and drawings which now follow.
a, 5b and 5c, are perspective assembly views the showing respectively the filter in its frame,
a, 6b, and 6c are perspective assembly view showing how the high voltage electronic box,
b and 6c depict the shortened channel and modified electronics box respectively.
d is a cross-sectional view taken through the channel member.
e is a cross-sectional view taken through the outer casing of the high voltage electronics box.
In the pre-existing charged media filters, the inside screen is made of metal, which acts as a capacitor between the outside screens 1 and 2. If by some reason the media 4 and 5 or the surrounding air becomes leaky and a small amount of current flows between the screens 1, 2, 3, this leakage ionizes the surrounding air which then becomes conducting. As a result, the charge on the central screen 3 starts to flow through the initial path. As more and more current flows, this produces further ionization of the air, contributing to more conduction. Finally, a cascade effect develops and the whole charge on the central screen 3 discharges with a spark. This is what is called “avalanche discharge”. It produces an annoying sound, ozone, and momentarily, the electronic features of the air filter ceased to operate.
As a consequence of this phenomenon, the voltage that can be applied to the central screen of a traditional filter is limited to about 7 kV in the case of a one-inch filter. To eliminate the avalanche effect and be able to apply higher voltage to the central screen 3, the central screen can be made of a high resistivity material such as plastic.
To illustrate the effect of this arrangement,
Accordingly, by making the central screen 3a with a high resistivity material, we can apply higher charging voltage to the assembly of screens which produces higher degree of polarization which, in turn, increases the filter's efficiency.
The graph of
Turning to the assembly of the electronic high voltage power supply on the filter,
The further improvement of the present invention is shown in
In final assembled format, as shown in
The foregoing has constituted a description of specific embodiments showing how the invention may be allied and put in use. These embodiments are only exemplary. The invention in its broadest, and more specific aspects, is further described and define in the claims which now follow.
These claims, and the language used herein, are to be understood in terms of the variants of the invention, which have been described. They are not to be restricted to such variants, but are to be read as covering the full scope of the invention as is implicit with the invention and the disclosure that has been provided herein.