This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2010-267578, filed Nov. 30, 2010; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to an electronic apparatus comprising a light emitting part.
In electronic apparatuses, a light emitting part employing an LED is often provided aside from a main display screen. Some electronic apparatuses are configured to prevent leakage of light from the light emitting part.
Such a light emitting part employing an LED is variously applicable, and there has been a need to improve the light emitting part used for electronic apparatuses.
A general architecture that implements the various features of the embodiments will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate the embodiments and not to limit the scope of the invention.
Various embodiments will be described hereinafter with reference to the accompanying drawings.
In general, according to one embodiment, an electronic apparatus includes: a housing including a transparent portion; a printed circuit board contained in the housing; a light source provided on the printed circuit board; a first member; a second member; and a reinforcing plate. The first member includes: a first opening portion configured to allow light emitted from the light source to the transparent portion to pass therethrough; and a duct-shaped first main body defining the periphery of the first opening portion. The second member includes: a second opening portion configured to allow light emitted from the light source to the transparent portion to pass therethrough; and a duct-shaped second main body defining the periphery of the second opening portion, and brought into contact with the first member so that the first opening portion communicates with the second opening portion.
Referring to
As shown in
The display unit 13 comprises a display panel 15 (display device), and a display cabinet 16 surrounding the periphery of the display panel 15. The display panel 15 is formed of, for example, a liquid crystal panel in a rectangular plate shape. The display panel 15 may be another type of display panel, such as a plasma display panel or an organic electroluminescent panel.
As shown in
The printed circuit board 25 collectively controls the entire portable computer 11. As shown in
The transparent portion 21 is formed of, for example, a transparent resin material. As shown in
The light sources 26 are each formed of, for example, an upward-lighting-type light emitting diode. The light emitting diode has a viewing angle of, for example, 120 to 170 degrees. The transparent portion 21 is provided within the range of the viewing angles of the light sources 26. As shown in
The main body cabinet 22 comprises an upper first case 36 and a lower second case 37 provided separately from the first case 36. The first case 36 has a light blocking property as a whole, but comprises the transparent portion 21 as a part.
The first unit 27 is fixed to the printed circuit board 25 by, for example, double-sided tape 38 as shown in
In a state where the first unit 27 is attached to the printed circuit board 25, the first main body 44 surrounds the four sides of each of the light sources 26. The first main body 44 comprises three first walls 44A extending in a direction crossing or orthogonal to the printed circuit board 25, and one second wall 44B slantingly provided relative to the printed circuit board 25. The second wall 44B is slanted along an imaginary line connecting the light source 26 and the transparent portion 21. Therefore, the first main body 44 is slanted as a whole along the imaginary line connecting the light source 26 and the transparent portion 21.
As shown in
As shown in
As shown in
As shown in
The second coupling member 52 comprises a fixing hole 57 for fixing at each end. As shown in
The overlapping portion 55 protruding from the second main body 54 is configured to form one continuous wall between the adjacent second members 51. As shown in
As shown in
The second fixing portions 62 are located in the vicinities of corners at the front F of the reinforcing plate 31. The second fixing portions 62 respectively comprise a pair of second through-holes 62A located in the vicinities of respective corners. As shown in
The positioning portion 63 is formed of a pair of through-holes 63A. The through-holes 63A are located in the vicinities of, for example, respective second through-holes 62A. The first case 36 comprises a pair of positioning pins 64 inserted into the through-holes 63A of the positioning portion 63. By inserting the positioning pins 64 in the through-holes 63A, the position of the reinforcing plate 31 relative to, for example, the first case 36 can be determined. The reinforcing plate 31 comprises some bent portions 31A, and has high stiffness against bending.
As shown in
According to the first embodiment, the portable computer 11 comprises: the housing 32 comprising the transparent portion 21; the printed circuit board 25 contained in the housing 32; the light source 26 provided on the printed circuit board 25; the first member 41 fixed to the printed circuit board 25 and comprising the first opening portion 43 configured to allow light emitted from the light source 26 to the transparent portion 21 to pass therethrough and the duct-shaped first main body 44 defining the periphery of the first opening portion 43; the second member 51 comprising the second opening portion 53 configured to allow light emitted from the light source 26 to the transparent portion 21 to pass therethrough, and the duct-shaped second main body 54 defining the periphery of the second opening portion 53, the second member 51 being fixed to the inner surface of the transparent portion 21 and brought into contact with the first member 41 so that the first opening portion 43 communicates with the second opening portion 53; and the reinforcing plate 31 provided between the first member 41 and the second member 51, and fixed to the housing 32 on both sides between which the first member 41 and the second member 51 are provided.
With this configuration, the first member 41 and the second member 51 prevent light emitted from the light source 26 from leaking in an unintended direction, and enables the portable computer 11 to produce an appropriate lighting effect. Further, even when a user, for example, lands on their hand on the housing 32 and pressure is applied to the first case 36, the reinforcing plate 31 provided between the first member 41 and the second member 51 can prevent the pressure being directly transferred to the printed circuit board 25, thereby preventing a break or a fracture in the printed circuit board 25, which is caused by application of pressure to the printed circuit board 25.
The light source 26 is provided on the extending portion 25B projecting from the main portion of the printed circuit board 25, the first member 41 comprises the protruding portion 45 protruding from the first main body 44, and the protruding portion 45 surrounds the outer edge of the extending portion 25B. This configuration can prevent light emitted from the light source 26 parallel to the printed circuit board 25 from leaking from the gap between the first member 41 and the printed circuit board 25, thereby preventing light leakage in an unintended direction.
In addition, this configuration makes it possible to prevent light leakage even when the light source 26 is located as close to, for example, the end part of the extending portion 25B as possible, and to improve flexibility in design. Providing the extending portion 25B on the printed circuit board 25 and providing the light source 26 on the extending portion 25B eliminates the necessity of a small substrate specially for attaching the light source 26, and the number of components can be reduced. In addition, the protruding portion 45 protects the periphery of the extending portion 25B. Therefore, in a case where a shock from outside is applied, such as a case where the portable computer 11 is dropped, the extending portion 25B can be prevented from coming into contact with the housing 32, and, for example, chipping or cracking in the extending portion 25B can be prevented.
Further more, the housing 32 comprises the first case 36 to which the second member 51 is fixed and the second case 37 provided separately from the first case 36, and the fixing portion is fixed to the second case 37. With this configuration, even when a user, for example, places their hand on the housing 32, forcefully pushes the housing 32, and greatly bends the first case 36 together with the housing 32, pressure from the first case 36 is received by the reinforcing plate 31 since the reinforcing plate 31 is fixed to the second case 37. Therefore, such a large pressure as to bend the first case 36 together with the housing 32 can be prevented from being directly transferred to the printed circuit board 25, thereby preventing breakage of the printed circuit board 25.
The second member 51 comprises the overlapping portion 55 protruding from the second main body 54, and the overlapping portion 55 overlaps the periphery of the first main body 44 of the first member 41. This configuration can prevent light from leaking from the gap between the first member 41 and the second member 51, and enables the portable computer 11 to produce a more appropriate lighting effect.
The protruding portion 45 comprises the opposed portion 45A which is opposed to the housing 32, and the opposed portion 45A is slanted along the inner surface of the housing 32. This configuration can prevent interference between the protruding portion 45 and the inner surface of the housing 32, thereby preventing, for example, a shock from outside from being transferred to the printed circuit board 25 via the first member 41.
The transparent portion 21 is located at an oblique position shifted from a position facing the light sources 26, and the first main body 44 is located slantingly along an imaginary line connecting the light source 26 and the transparent portion 21. With this configuration, light emitted from the light source 26 to the transparent portion 21 is not blocked by the first main body 44, and the portable computer 11 can produce an appropriate lighting effect at the transparent portion 21. Further, the configuration increases flexibility in layout of the light source 26, printed circuit board 25 and transparent portion 21, and enables adoption of a more unique design.
Next, referring to
The second unit 28 is welded and fixed to the inner surface of the transparent portion 21. Like the one shown in
The second main body 54 comprises four third wall portions 54A extending in a direction crossing or orthogonal to the printed circuit board 25. The second main body 54 comprises a cutout portion 56 for passing the reinforcing plate 31 therethrough.
The second coupling portion 52 comprises a fixing hole 57 for fixing at each end. The first case 36 of the main body cabinet 22 is provided with pins 58 configured to pass through the fixing holes 57. By melting the pins 58 at high temperature, the second unit 28 is welded and fixed to the main body cabinet 22 (first case 36).
As in the first embodiment, the first overlapping portion 55A and second overlapping portion 55B protruding from the second main body 54 are each configured to form one continuous wall between the adjacent second members 51. The first overlapping portion 55A overlaps the periphery of the first main body 44 of the first member 41 at a position shifted frontward (F) relative to the first member 41. The second overlapping portion 55B overlaps the periphery of the first main body 44 of the first member 41 at a position shifted rearward (R) relative to the first member 41. Accordingly, the first main body 44 is interposed between the first overlapping portion 55A and the second overlapping portion 55B. The first overlapping portion 55A and the second overlapping portion 55B prevent light leakage from a minute gap between the first member 41 and the second member 51.
According to the second embodiment, the portable computer 11 comprises: the housing 32 comprising the transparent portion 21; the printed circuit board 25 contained in the housing 32; the light source 26 provided on the printed circuit board 25; the first member 41 fixed to the printed circuit board 25 and comprising the first opening portion 43 configured to allow light emitted from the light source 26 to the transparent portion 21 to pass therethrough, and the duct-shaped first main body 44 defining the periphery of the first opening portion 43; and the second member 51 comprising the second opening portion 53 configured to allow light emitted from the light source 26 to the transparent portion 21 to pass therethrough, and the duct-shaped second main body 54 defining the periphery of the second opening portion 53, the second member 51 being fixed to the inner surface of the transparent portion 21 and brought into contact with the first member 41 so that the first opening portion 43 communicates with the second opening portion 53.
With this configuration, the first member 41 and the second member 51 appropriately guide light emitted from the light source 26 to the transparent portion 21, and light leakage in an unintended direction in the housing 32 can be prevented.
The light source 26 is provided on the extending portion 25B projecting from the main portion 25A of the printed circuit board 25, the first member 41 comprises the protruding portion 45 protruding from the first main body 44, and the protruding portion 45 surrounds the outer edge of the extending portion 25B. This configuration can prevent light emitted from the light source 26 parallel to the printed circuit board 25 from leaking from between the first member 41 and the printed circuit board 25. Consequently, a design with improved flexibility, such as a design in which the light source 26 is located as close to, for example, the end part of the extending portion 25B as possible, becomes possible. Further, the necessity of a small substrate specially for attaching the light source 26 is eliminated, and the number of components can be reduced. In addition, the protruding portion 45 protects the periphery of the extending portion 25B. Therefore, in a case where a shock from outside is applied, such as a case where the portable computer 11 is dropped, the extending portion 25B can be prevented from coming into contact with the housing 32, and, for example, chipping or cracking in the extending portion 25B can be prevented.
The second member 51 comprises the first overlapping portion 55A and second overlapping portion 55B protruding from the second main body 54, and the first main body 44 is interposed between the first overlapping portion 55A and the second overlapping portion 55B. With this configuration, light leakage from the gap between the first member 41 and the second member 51 can be prevented in two directions. Consequently, light leakage in an unintended direction does not occur, and a more appropriate light effect can be produced.
In the present embodiment, the second unit 28 is welded and fixed to the inner surface of the transparent portion 21. However, the second unit 28 may be located apart from the first case 36 (transparent portion 21) of the main body cabinet 22. In a modified embodiment, the second unit 28 is fixed to the first case 36 (transparent portion 21) via, for example, a spacer, and the second member 51 of the second unit 28 is located between the first member 41 and the transparent portion 21 at a position apart from the printed circuit board 25.
Next, referring to
In the present embodiment, the transparent portion 21 is located at an oblique position shifted from a position facing the light sources 26. The light source 26 is located more rearward (R) than in the first embodiment. In the present embodiment, the light source 26 is formed of a side-lighting-type light emitting diode. Seven light sources 26 are laterally aligned on the extending portion 25B of the printed circuit board 25.
The first unit 27 is fixed to the printed circuit board 25 by, for example, double-sided tape 38. Like the one shown in
Like the ones shown in
In a state where the first unit 27 is attached to the printed circuit board 25, the first main body 44 surrounds the periphery of each of the light sources 26. The first main body 44 comprises three first walls 44A extending in a direction crossing or orthogonal to the printed circuit board 25, and one second wall 44B slantingly provided relative to the printed circuit board 25. Since the second wall 44B is slanted relative to the printed circuit board 25, the first main body 44 is slanted as a whole along an imaginary line connecting the light source 26 and the transparent portion 21.
The first main body 44 comprises, for example, a mirror-like reflective plate 71 (reflective part) on the inner surface of the second wall 44B. As shown in
According to the third embodiment, the first main body 44 comprises the reflective part on its inner surface, and the reflective part can reflect light from the light source 26 to the transparent portion 21. With this configuration, even when the light source 26 is further shifted from the transparent portion 21, light from the light source 26 can be directed to the transparent portion 21. Accordingly, the flexibility in design related to the positional relationship between the light source 26 and the transparent portion 21 can be further increased. By use of the reflective part, light emitted from the light source 26 to the eyes of a user can be intentionally obstructed, and due consideration can be given to the user's convenience.
The electronic apparatus is not limited to the portable computer 11 described in the above embodiments, and may be another electronic apparatus such as a television, cellular telephone or electronic book reader for electrically display books, images or the like.
Further, the electronic apparatus may not necessarily be embodied just as described above, and the structural elements of the electronic apparatus may be modified within the spirit of the invention in the stage of implementation. Further, the invention is variously embodied by appropriately combining a plurality of structural elements disclosed in the above descriptions of embodiments. For example, some structural elements may be omitted from all the structural elements disclosed in the above descriptions of embodiments. Moreover, structural elements in different embodiments may be combined where necessary.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2010-267578 | Nov 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4444520 | Hanakata et al. | Apr 1984 | A |
6623152 | Kroening | Sep 2003 | B1 |
8425079 | Shiroishi et al. | Apr 2013 | B2 |
20050040972 | Hamada et al. | Feb 2005 | A1 |
20060114238 | Wong et al. | Jun 2006 | A1 |
20090135139 | Wong et al. | May 2009 | A1 |
20090244820 | Kusaka et al. | Oct 2009 | A1 |
20100201822 | Ichimura et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
H54-88282 | Jun 1979 | JP |
H04-4321 | Jan 1992 | JP |
H06-21085 | Mar 1994 | JP |
06-236156 | Aug 1994 | JP |
08-101388 | Apr 1996 | JP |
2000-208967 | Jul 2000 | JP |
2002 268591 | Sep 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20120134109 A1 | May 2012 | US |