1. Technical Field
The present invention relates to an electronic apparatus including a time measurement section that measures hours and minutes and a display section that displays the hour and minute.
2. Related Art
At present, since the accuracy of time measured by a timepiece has been drastically improved, a timepiece that simply displays accurate time has become less attractive than ever, and a fashionable timepiece and a playfully designed timepiece increasingly tend to be required. As a solution to realization of such a timepiece, it is conceivable to allow a timepiece to display not only accurate time but also a fashionable content or a playfully designed content. For example, there is a proposed electronic timepiece that incorporates a liquid crystal display device that displays geometric images, animation images, or other images or has an aesthetically joyful, fashionable color-changing function (JP-A-2004-28918, for example).
The electronic timepiece described in JP-A-2004-28918, however, uses the same font both in image data representing the hour digits and image data representing the minute digits, and it cannot therefore be said that diversity in time display is provided. Further, in the electronic timepiece described in JP-A-2004-28918, the image data representing hours and the image data representing minutes are handled together and the display position thereof can therefore be changed together. However, for example, the display position of the hour digits and the display position of the minute digits are not separately changed to other positions. It is therefore conceivable that use of a special font makes displayed time illegible.
An advantage of some aspects of the invention is to provide an electronic apparatus capable of not only simply displaying hours and minutes but also providing diversity in hour and minute display and further capable of legible time display irrespective of a font used.
An electronic apparatus according to an aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores a plurality of sets of hour image data representing numerals corresponding to hours and a plurality of sets of minute image data representing numerals corresponding to minutes, a display table representing information that identifies the hour image data and the minute image data used to display a predetermined hour and minute and information that identifies a display position of a numeral specified by at least one of the identified hour image data and minute image data, and a display section that displays, based on the display table, the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section, and the display table contains information that identifies, when the hour and minute are a first hour and minute, a first position as the display position of the numeral specified by at least one of the hour image data and the minute image data and information that identifies, when the hour and minute are a second hour and minute that differ from the first hour and minute and have the same hour or minute as the first hour or minute, a second position different from the first position.
According to the aspect of the invention, the display table represents combinations of information that identifies hour image data and minute image data used to display a predetermined hour and minute and information that identifies the display position of a numeral specified by at least one of the hour image data and the minute image data. The display table contains information that identifies, when the hour and minute are a first hour and minute, a first position as the display position of the numeral specified by at least one of the hour image data and the minute image data and information that identifies, when the hour and minute are a second hour and minute that differ from the first hour and minute and have the same hour or minute as the first hour or minute, a second position different from the first position. Therefore, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, at least one of the hour image data and the minute image data is displayed in the second position different from the first position in accordance with the hour and minute even for the same hour or minute. As a result, legible hour and minute display is performed irrespective of a font used in the display.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
An electronic apparatus according to another aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores hour image data representing numerals corresponding to hours and minute image data representing numerals corresponding to minutes, a display table representing a combination of information that identifies the hour image data and the minute image data used to display a predetermined hour and minute and information that identifies display positions of the hour image data and the minute image data, and a display section that displays, based on the display table, the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section. The image storage section stores first or second hour image data as hour image data representing a numeral corresponding to one of the hours, and the display table contains information that identifies the first hour image data as the hour image data when the hour is the one of the hours and the minute is a first minute and information that identifies the second hour image data as the hour image data when the hour is the one of the hours and the minute is a second minute different from the first minute.
According to the aspect of the invention, the display table represents combinations of information that identifies hour image data and minute image data used to display a predetermined hour and minute and information that identifies the display positions of the hour image data and the minute image data. The display table contains information that identifies first hour image data as the hour image data when the hour is one of the hours and the minute is a first minute and information that identifies second hour image data as the hour image data when the hour is the one of the hours and the minute is a second minute different from the first minute. Therefore, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, the second hour image data different from the first hour image data is displayed in accordance with the hour and minute even for the same hour or minute. As a result, legible hour and minute display is performed irrespective of a font used in the display. Further, diverse hour and minute display is performed.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
In the electronic apparatus described above, it is preferable that each of the hour image data and the minute image data is image data that allows characters of a word representing a numeral to be drawn, and that under a definition that an x direction is a direction in which the characters are arranged and a y direction is a direction perpendicular to the x direction, the y-direction coordinate of the display position in a display area of the display section differs between the hour image data and the minute image data. In this case, although the hour image data and the minute image data are displayed in different positions in the y direction, at least one of the hour image data and the minute image data is displayed in a position different from a predetermined standard position in accordance with the hour and minute to be displayed, or image data different from predetermined standard image data is displayed in accordance with the hour and minute to be displayed, whereby legible time display is performed irrespective of the font used in the display, and diverse time display is performed.
An electronic apparatus according to still another aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores a plurality of sets of hour image data representing numerals corresponding to hours and a plurality of sets of minute image data representing numerals corresponding to minutes, a display table representing information that identifies the hour image data and the minute image data used to display predetermined time and information that identifies display positions of the hour image data and the minute image data, and a display section that displays, based on the display table, the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section, and the image storage section stores, as the minute image data, minute image data that allows an image representing a numeral corresponding to the minute and a non-numeral image to be drawn as a single image and further allows the non-numeral image for a first minute and the non-numeral image for a second minute to differ from each other.
According to the aspect of the invention, the display table represents combinations of information that identifies hour image data and minute image data used to display a predetermined hour and minute and information that identifies the display positions of the hour image data and the minute image data. Further, the minute image data includes minute image data that allows an image representing a numeral corresponding to the minute and a non-numeral image to be drawn as a single image and that allows the non-numeral image to be different by minute. Therefore, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, at a first minute and a second minute, different images are displayed as the non-numeral image, whereby diverse hour and minute displayed is performed.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
In the electronic apparatus described above, it is preferable that the image storage section stores, as the hour image data, first hour image data that allows an image representing a numeral corresponding to the tens place of each of the hours and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the tens place changes and second hour image data that allows an image representing a numeral corresponding to the ones place of each of the hours and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the ones place changes and further stores, as the minute image data, first minute image data that allows an image representing a numeral corresponding to the tens place of each of the minutes and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the tens place changes and second minute image data that allows an image representing a numeral corresponding to the ones place of each of the minutes and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the ones place changes, and the display table includes combinations of information that identifies the first hour image data and the second hour image data as well as the first minute image data and the second minute image data used to display predetermined time and information that identifies display positions of the first hour image data and the second hour image data and display positions of the first minute image data and the second minute image data.
In this case, different images are displayed as the non-numeral image at each of the tens place and the ones place of each of the hours and at the tens place and the ones place of each of the minutes. Therefore, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, diverse hour and minute display is performed.
In the electronic apparatus described above, it is preferable that the image storage section stores, as the minute image data, minute image data that allows an image representing each of numerals from 0 to 59 corresponding to the minutes and a non-numeral image to be drawn as a single image and further allows the non-numeral image to vary. In this case, different images are displayed as the non-numeral image whenever the minute advances, whereby diverse hour and minute display is performed.
In the electronic apparatus described above, it is preferable that the image storage section stores, as the hour image data, hour image data that allows an image representing each of numerals from 1 to 12 corresponding to the hours to be drawn. In this case, legible hour and minute display is performed, while diverse hour and minute display is performed.
In the electronic apparatus described above, it is preferable that the image storage section stores, as the hour image data, hour image data that allows an image representing each of numerals from 0 to 23 corresponding to the hours to be drawn. In this case, legible hour and minute display is performed, while diverse hour and minute display is performed.
In the electronic apparatus described above, it is preferable that the image storage section stores, as the first hour image data, first hour image data that allows an image representing each of numerals from 1 to 2 corresponding to the tens place of the hours and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the tens place changes, further stores, as the second hour image data, second hour image data that allows an image representing each of numerals from 0 to 9 corresponding to the ones place of the hours and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the ones place changes, further stores, as the first minute image data, first minute image data that allows an image representing each of numerals from 0 to 5 corresponding to the tens place of the minutes and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the tens place changes, and further stores, as the second minute image data, second minute image data that allows an image representing each of numerals from 0 to 9 corresponding to the ones place of the minutes and a non-numeral image to be drawn as a single image and further allows the non-numeral image to change when the numeral corresponding to the ones place changes.
In this case, different images are displayed as the non-numeral image at each of the tens place and the ones place of each of the hours and at the tens place and the ones place of each of the minutes. Therefore, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, diverse hour and minute display is performed. Further, legible time and minute display is performed.
An electronic apparatus according to yet another aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores a plurality of sets of hour image data representing numerals corresponding to hours and a plurality of sets of minute image data representing numerals corresponding to minutes, and a display section that displays the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section, and the display section displays at least one of the hour image data and the minute image data in a first position when the time and minute are a first hour and minute, whereas displaying at least one of the hour image data and the minute image data in a second position different from the first position when the hour and minute are a second hour and minute that differ from the first hour and minute but have the same hour or minute of the first hour and minute.
According to the aspect of the invention, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, and when the hour and minute are a first hour and minute, at least one of the hour image data and the minute image data is displayed in a first position, whereas when the hour and minute are a second hour and minute that differ from the first hour and minute but have the same hour or minute of the first hour and minute, at least one of the hour image data and the minute image data is displayed in a second position different from the first position. As a result, legible hour and minute display is performed irrespective of the font used in the display. Further, diverse time display is performed.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
An electronic apparatus according to still yet another aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores a plurality of sets of hour image data representing numerals corresponding to hours and a plurality of sets of minute image data representing numerals corresponding to minutes, and a display section that displays the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section. The image storage section stores first or second hour image data as hour image data representing numerals corresponding to a predetermined hour and minute, and the display section displays, at the predetermined hour and minute, the first hour image data when the minute is a first minute, whereas displaying the second hour image data when the minute is a second minute different from the first minute.
According to the aspect of the invention, when hour image data and minute image data representing numerals corresponding to the hour and minute measured by the time measurement section are displayed in the display section, at a predetermined hour and minute, the first hour image data is displayed when the minute is a first minute, whereas the second hour image data is displayed when the minute is a second minute different from the first minute. Diverse hour and minute display is therefore performed.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
An electronic apparatus according to further another aspect of the invention includes a time measurement section that measures time including an hour and a minute, an image storage section that stores a plurality of sets of hour image data representing numerals corresponding to hours and a plurality of sets of minute image data representing numerals corresponding to minutes, and a display section that displays the hour image data and the minute image data representing numerals corresponding to the hour and minute measured by the time measurement section, and the image storage section stores, as the minute image data, minute image data that allows an image representing a numeral corresponding to the minute and a non-numeral image to be drawn as a single image and further allows the non-numeral image for a first minute and the non-numeral image for a second minute to differ from each other.
According to the aspect of the invention, when minute image data representing a numeral corresponding to the minute measured by the time measurement section is displayed in the display section, the minute image data is so displayed that an image representing a numeral corresponding to the minute and a non-numeral image are displayed as a single image and the non-numeral image for a first minute and the non-numeral image for a second minute differ from each other. Diverse hour and minute display is therefore performed.
In the aspect of the invention, the “electronic apparatus” is a concept including a wristwatch-type electronic timepiece, a wrist-worn sport apparatus, a wearable apparatus, and other apparatus.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Preferable embodiments of the invention will be described below in detail with reference to the accompanying drawings and the like. It is noted in the drawing that the dimension and scale of each portion differ from an actual dimension and scale thereof as appropriate. Further, each embodiment described below is a preferable specific example of the invention, and a variety of technically preferable restrictions are therefore imposed thereon. The scope of the invention is, however, not limited to the embodiments unless otherwise particularly stated in the following description that a limitation is imposed on the invention.
A first embodiment of the invention will be described with reference to
A display section 4, which is formed of an electrophoretic display (EPD) panel, is provided on the front side of the timepiece case 2, and an operation button A (5a) and an operation button B (5b) are provided on side surfaces of the timepiece case 2 (surfaces perpendicular to direction toward front side).
In response to operation of pressing the operation button A (5a) or the operation button B (5b) (input operation), the display section 4 displays a variety of images, for example, a variety of images including time information updated every minute or second, an image representing passage of time, and an image for time correction.
An electrophoretic display device including the display section 4 and a driver (not shown) that drives the display section 4 (only display section is shown) is provided in the timepiece case 2.
In the present embodiment, the computation IC 10 is achieved by use of a highly versatile microcomputer unit (MCU) having a rewritable flash ROM 12 built therein and operates in accordance with a program and data stored in the flash ROM 12. The function of the computation IC 10 can therefore be readily changed by operation of rewriting the program and data stored in the flash ROM 12. Further, the program and data can instead be rewritten in a state in which the computation IC 10 is built in a movement (driver of timepiece), whereby the program can be readily changed.
The computation IC 10 carries out the process of determining the type of an image to be displayed in the display section 4 and a mode according to which an image is displayed in the display section 4 in accordance with operation of pressing the operation button A (5a) and the operation button B (5b) (input operation). The mode determined by the computation IC 10 is, for example, a minute update mode in which an image containing displayed time updated every minute is displayed in the display section 4 and a time correction mode in which the time displayed in the display section 4 is advanced or turned back in accordance with operation of pressing the operation button A (5a) or the operation button B (5b) (input operation).
The computation IC 10, for example, carries out the process of acquiring time information, such as date and time, from the real time clock IC 20, which serves as a time measurement section, and determining a content to be displayed in the display section 4 in a time display mode and carries out the process of transmitting a time correction value according to operation of pressing the operation button A (5a) and the operation button B (5b) (input operation) to the real time clock IC 20 in the time correction mode.
The flash ROM 12 stores a table for specifying a macro instruction for deleting an image displayed in the display section 4 (image deletion macro instruction) and a macro instruction for drawing a new image in the display section 4 (new image drawing macro instruction). Each of the macro instructions is stored in a flash ROM 32 in the drawing IC 30. The computation IC 10 carries out the process of reading the address of a desired macro instruction from the table in the flash ROM 12 at predetermined timing and instructing the drawing IC 30 to execute the macro instruction.
The computation IC 10 further carries out the process of transferring image data from the drawing IC 30 to the display section 4 and the process of instructing the drawing IC 30 to drive the display section 4. The computation IC 10 further supplies the drawing IC 30 with a reference signal (4 kHz, for example) for driving the display section 4.
The computation IC 10 further carries out the process of supplying the temperature measurement IC 40 and the drawing IC 30 with electric power, the process of reading a measured temperature from the temperature measurement IC 40, and the process of determining a period for which drive pulses that drive the display section 4 are applied and timing at which the drive pulses are applied to the drive section 4 based on the read measured temperature.
Further, the computation IC 10 has a normal action mode and a sleep mode. In the normal action mode, the computation IC 10 operates in synchronization with a clock signal outputted by an oscillation circuit (for example, CR oscillation circuit formed of capacitor C and resistor R) built in the computation IC 10, and in the sleep mode, the oscillation circuit stops operating so that the computation IC 10 consumes a smaller amount of power than in the normal action mode. To achieve low power consumption, the computation IC 10 operates in the normal action mode when it carries out the process of updating the display in the display section 4, whereas when the computation IC 10 carries out none of the processes described above, the computation IC 10 unloads the current mode information and data in use to a RAM (random access memory, not shown) built in the computation IC 10 and is on standby in the sleep mode. For example, when the time display mode is selected, the computation IC 10 in the normal action mode transmits drawing information (macro instruction) on an image to be displayed in the display section 4 to the drawing IC 30, causes a timer 22, which is provided in the real time clock IC 20, to start measurement, and then transitions to the sleep mode. The computation IC 10 in the sleep mode receives an interrupt signal INT, which represents that the timer 22 has measured a predetermined period (completed measurement), from the real time clock IC 20 (measurement completion signal) and transitions to the normal action mode.
The computation IC 10 may further carry out, for example, the process of reading a measured temperature from the temperature measurement IC 40 and determining whether or not a high temperature limit or a low temperature limit until which the device can normally operate has been reached and the process of monitoring the voltage across the primary battery 60 and determining whether or not a low voltage limit has been reached.
In the present embodiment, the computation IC 10 executes a program stored in advance in the flash ROM 12 to carry out the processes described above but may instead receive the program over a network from a server connected to the network and stores the program in an internal memory, followed by execution of the program. Still instead, the electronic timepiece 1 may be so configured that it can be connected to an information storage medium, such as a memory card, and the computation IC 10 may execute a program stored in the information storage medium to carry out the processes described above.
The real time clock IC 20, which serves as a time measurement section, causes a quartz vibrator 24 to oscillate to generate, for example, a 32,768-Hz oscillation signal and measures time, such as seconds, minutes, and hours, and dates, such as days, months, and years, by using a clock signal produced by division of the oscillation signal to generate time information containing the seconds, minutes, hours, days, months, years, and other parameters. That is, the real time clock IC 20 functions as a time measurement section. The time information is stored in a register (not shown) built in the real time clock IC 20, and the real time clock IC 20 transmits part or entirety of the time information stored in the register to the computation IC 10 in response to a request from the computation IC 10.
Further, the real time clock IC 20 causes the timer 22 to start measurement in response to a request from the computation IC 10 and transmits the interrupt signal INT when the timer 22 completes the measurement (measurement completion signal) to the computation IC 10. The period measured by the timer 22 may be a fixed period or may be a period specified by the computation IC 10.
The drawing IC 30 carries out the process of developing image data for deleting the current image in a VRAM (video RAM) 34, which is built in the drawing IC 30, in response to an instruction to execute the image deletion macro instruction from the computation IC 10 and the process of developing image data for displaying a new image in the VRAM in response to an instruction to execute the new image drawing macro instruction from the computation IC 10. The drawing IC 30 further carries out the process of supplying the display section 4 with electric power and transferring the image data developed in the VRAM 34 to the display section 4 and the process of causing a voltage boosting circuit 36 built in the drawing IC 30 to boost external power supply voltage (3 V, for example) to high voltage (15 V, for example) and generating drive pulses formed of the high voltage to drive the display section 4.
The flash ROM 32 built in the drawing IC 30 stores image data on images to be displayed in the display section 4 (for example, image data for performing the display shown in
The drawing IC 30 further uses the reference signal (4 kHz, for example) supplied from the computation IC 10 to adjust the application (transmission) timing and the pulse width of the drive pulses. The drawing IC 30 further has an oscillation circuit (not shown) built therein, such as a CR oscillation circuit, and the oscillation circuit generates a clock signal having a relatively high frequency (400 kHz, for example) and uses the clock signal to carry out the processes described above except the process of generating the drive pulses. The thus functioning drawing IC 30, which uses the reference signal having a frequency (4 kHz, for example) sufficiently lower than the frequency of the clock signal generated by the built-in oscillation circuit to adjust the application (transmission) timing and the pulse width of the drive pulses, achieves low power consumption.
When the time display mode is selected, the real time clock IC 20 transmits, when the 00 second of each minute is exactly reached, a 00-second notification signal to the computation IC 10, and the computation IC 10 receives the notification signal and instructs the drawing IC 30 to apply (transmit) the drive pulses to the display section 4. Having received the instruction, the drawing IC 30 applies (transmits) the drive pulses to the display section 4. Having received the drive pulses, the display section 4 displays a new image (image containing time incremented by one minute). As described above, in the time display mode, synchronizing the update of an image displayed in the display section 4 with the accurate notification signal transmitted by the real time clock IC 20 as described above allows the displayed time to start changing at more accurate timing than in a case where the image update is synchronized with the asynchronous clock signal generated by the drawing IC 30.
The temperature measurement IC 40 operates with electric power supplied from the computation IC 10 and carries out the process of measuring the temperature in response to a request from the computation IC 10, causing an A/D converter (not shown) built in the temperature measurement IC 40 to convert a measured temperature into a digital value, and transmitting the digital value to the computation IC 10.
The display section 4 is provided with a data line drive circuit 101 and a scan line drive circuit 102. In the display section 4 are further formed a plurality of data lines 111, which extend from the data line drive circuit 101, and a plurality of scan lines 112, which extend from the scan line drive circuit 102, and a plurality of pixels 103 are provided in correspondence with the intersections of the data lines and the scan lines.
The data line drive circuit 101 is connected to the pixels 103 via n data lines 111 (X1, X2, . . . , and Xn). The data line drive circuit 101 supplies each of the pixels 103 with an image signal that specifies 1-bit image data corresponding to that pixel 103. It is assumed in the present embodiment that the data line drive circuit 101 supplies a pixel 103 with a low-level image signal to specify image data of “0”, whereas supplying a pixel 103 with a high-level image signal to specify image data of “1”.
The scan line drive circuit 102 is connected to the pixels 103 via m scan lines 112 (Y1, Y2, . . . , and Ym). The scan line drive circuit 102 sequentially selects one of the scan lines 112 from the first row to the m-th row under the control of a controller 31 to supply the corresponding pixel 103 with a selection signal that specifies ON timing at which a drive TFT 104 (see
The display section 4 is provided with a high potential power supply line 205, which extends from the controller 31 via a VDDX terminal of the drawing IC 30, and the high potential power supply line 205 is connected to the data line drive circuit 101. The display section 4 is further provided with a high potential power supply line 206, which extends from the controller 31 via a VDDY terminal of the drawing IC 30, and the high potential power supply line 206 is connected to the scan line drive circuit 102. The controller 31 controls whether or not high potential (5 V) is supplied to the high potential power supply lines 205 and 206.
The display section 4 is further provided with a low potential power supply line 207, which extends from the controller 31 via a VSSX terminal of the drawing IC 30, and the low potential power supply line 207 is connected to the data line drive circuit 101. The display section 4 is further provided with a low potential power supply line 208, which extends from the controller 31 via a VSSY terminal of the drawing IC 30, and the low potential power supply line 208 is connected to the scan line drive circuit 102. The controller 31 supplies the low potential power supply lines 207 and 208 with low potential (0 V).
The display section 4 is further provided with a common electrode wiring line 200, a first pulse signal line 201, a second pulse signal line 202, a high potential power supply line 203, and a low potential power supply line 204, which extend from a common power supply modulation circuit 37 via a VCOM terminal, an S1 terminal, an S2 terminal, a VEP terminal, and a VSS terminal of the drawing IC 30, respectively, and each of the wiring lines is connected to the pixels 103. The common power supply modulation circuit 37 generates a variety of signals to be supplied to the wiring lines described above and performs electrical connection and disconnection (provision of high impedance, Hi-Z) of the wiring lines under the control of the controller 31.
The drawing IC 30 includes the controller 31, the flash ROM 32, an oscillation circuit 33, the VRAM 34, a RAM 35, the voltage boosting circuit 36, and the common power supply modulation circuit 37. The controller 31 keeps being powered off until an enable signal (high-level signal) is inputted from the computation IC 10 to an enable terminal XPDW and is powered on when the enable signal is inputted. The controller 31 in the power-on state uses the RAM 35 as a work area and controls the flash ROM 32, the oscillation circuit 33, the VRAM 34, the voltage boosting circuit 36, and the common power supply modulation circuit 37 to carry out processes for displaying an image in the display section 4.
The pixel 103 is provided with a drive TFT (thin film transistor) 104, a latch circuit 105, and a switch circuit 106, as shown in
The drive TFT 104 is a pixel switching device formed of an N-channel MOS (metal oxide semiconductor) transistor. The drive TFT 104 has a gate terminal connected to one of the scan lines 112, a source terminal connected to one of the data lines 111, and a drain terminal connected to a data input terminal of the latch circuit 105. The latch circuit 105 includes a transfer inverter 105t and a feedback inverter 105f. To the transfer inverter 105t and the feedback inverter 105f is supplied power supply voltage corresponding to the difference in potential between the high potential power supply line 203 and the low potential power supply line 204.
The switch circuit 106 is formed of transmission gates TG1 and TG2 and outputs a signal to a pixel electrode 135 (see
When image data of “1” (high-level image signal) is stored in the latch circuit 105 so that the transmission gate TG1 is turned on, the switch circuit 106 outputs a signal propagating to the first pulse signal line 201. On the other hand, when image data of “0” (low-level image signal) is stored in the latch circuit 105 so that the transmission gate TG2 is turned on, the switch circuit 106 outputs a signal propagating to the second pulse signal line 202. The circuit configuration described above can control the potential to be supplied to the pixel electrode 135 in each of the pixels 103.
In the present embodiment, the display section 4 has a plurality of two-particle-system, microcapsule-type electrophoretic devices, and the color of each of the pixels 103 is controlled by application of an electric field to the corresponding electrophoretic device.
On the other hand, the counter substrate 131 is a transparent substrate. In the display section 4, an image is displayed on the side facing the counter substrate 131. In the display section 4, a common electrode layer 370, in which a planar common electrode 137 is formed, is provided on one side of the counter substrate 131 that faces the electrophoretic devices 132. The common electrode 137 is a transparent electrode. The common electrode 137 is an electrode common to all the pixels, unlike the pixel electrodes 135, and potential VCOM is supplied to the common electrode 137.
The electrophoretic devices 132 are disposed in an electrophoretic display layer 360 provided between the common electrode layer 370 and the drive electrode layer 350, and the electrophoretic display layer 360 serves as the display area. A desired color can be displayed on a pixel basis in accordance with the difference in potential between the pixel electrode 135 (135A, 135B, for example) and the common electrode 137.
It is noted that an arbitrary intermediate color between black and white (gray) can also be displayed. To this end, the magnitude of the difference in potential between the pixel electrodes 135 and the common electrode 137 or the period for which the difference in potential is created is so controlled that the black particles 126 and the white particles 127 are stationary in an arbitrary intermediate position between the two electrodes.
As described above, an EPD panel, which not only allows an image to be held with no electric power supplied for a fixed period for low-power-consumption action but also allows 180-degree visual recognition, is also suitably used as a display section of a portable electronic timepiece, such as a wristwatch.
In the example in
Next, a short time before it is 8:33, the display section 4 displays an entirely black image B. To update the image A to the image B, an entirely black image is displayed by using a partial drive method for applying no voltage to the black pixels (applying zero voltage) but applying negative voltage to the white pixels, and the entirely black image is then displayed again by using an overall drive method for applying negative voltage to all the pixels. The overall drive method is a drive method for creating a potential difference (between common electrode 137 and pixel electrodes 135) in all the pixels for a period of driving (drawing) operation using the method.
The display section 4 then displays an entirely white image C. To update the image B to the image C, an entirely white image first is displayed by using the overall drive method for applying positive voltage to all the pixels, and the entirely white image is then displayed again by using the partial drive method for applying no voltage to the pixels having shown white in the image A (applying zero voltage) but applying positive voltage to the pixels having shown black in the image A. The partial drive method is a drive method for allowing presence of pixels where no potential difference (between common electrode 137 and pixel electrodes 135) is created for a period of driving (drawing) operation using the method.
Next, when it is 8:33, the display section 4 shows an image D in which the pixels in the display positions of “Eight” and “thirty-three” show white and the other pixels show black. To update the image C to the image D, the image D is displayed by using the partial drive method for applying negative voltage to the pixels that are not located in the display positions of “Eight” and “thirty-three” but applying no voltage to the pixels that are located in the display positions of “Eight” and “thirty-three” (applying zero voltage).
As described above, in the present embodiment, the partial drive method and the overall drive method are used to display an entirely black image and the overall drive method and the partial screen drive method are further used to display an entirely white image to delete a current image, and then the partial drive method is used to display a next image (new image). That is, in the image updating method according to the present embodiment, which first creates the state in which all the pixels show white and then displays a next image, a problem of color tone variation among images is unlikely to occur. Further, the image updating method according to the present embodiment, in which the time average of the electric field applied between each of the pixel electrodes 135 and the common electrode 137 is roughly zero and the DC balance is therefore achieved, ensures long-term reliability of the electrophoretic display device 7.
A drive period necessary to delete an image or draw a new image (drive pulse application period) in the display section 4 (EPD panel) changes with temperature, and the necessary drive period typically increases as the temperature decreases. In view of the fact described above, in the present embodiment, the drive period is changed in accordance with the temperature when an image is updated. To this end, the flash ROM 12 built in the computation IC 10 stores table information representing the relationship between the temperature and the drive pulse application period.
The computation IC 10 acquires a measured temperature from the temperature measurement IC 40 before an image is updated, refers to the table information stored in the flash ROM 12, and instructs an appropriate drive pulse application period according to the temperature when instructing the drawing IC 30 to transfer image data to the display section 4.
An hour and minute displaying process according to the present embodiment will next be described with reference to
The display positions in the display area of the display section 4 in the present embodiment are set at predetermined grid intervals and expressed by XY coordinates with an origin located at the lower right corner, as shown in
The hour image data 70 is configured, for example, in the form of an image in which the numerals from 1 to 12 corresponding to the hours are expressed in English as one, two, . . . , twelve drawn in a cursive script, as shown in
The minute image data 80 is configured, for example, as in the case of the hour image data 70, in the form of an image in which the numerals from 0 to 59 corresponding to the minutes are expressed in English as one, two, . . . , fifty-nine drawn in a cursive script, as shown in
In the present embodiment, the computation IC 10 refers to a minute display table 90 shown in
The minute display table 90 describes macro names corresponding to the minutes, image names corresponding to the macro names (information that identifies minute image data used to display predetermined minute), and X and Y coordinates (information that identifies display position of minute image data), as shown in
Further, for example, the image name corresponding to the minute of 32 is MINUTE_A_32.bmp, and the flash ROM 32 stores minute image data corresponding to each image name.
The hour display table 91 describes adjustment numbers in correspondence with combinations of the hours and minutes, as shown in
The image name corresponding to the adjustment number “22” is HOUR_B_08.bmp, and the flash ROM 32 stores hour image data corresponding to each of the image names.
Although not shown, in the present embodiment, in which the time is displayed by using numerals from one to twelve, characters “AM” and “PM”, which represents the morning and afternoon, respectively, are displayed in a layer different from a layer where the time is displayed.
The procedure of the display process in the present embodiment will next be described with reference to the flowchart in
The computation IC 10 then acquires time information from the real time clock IC 20 (S20). The computation IC 10 sets a period to be measured in the timer 22 provided in the real time clock IC 20 and causes the timer 22 to start the measurement (S30). In the present embodiment, the period to be measured is set at a value smaller than one minute, for example, about 50 seconds so that the process of drawing an image in the display section 4 carried out in step S70 is carried out every minute.
The computation IC 10 then reads an adjustment number from the hour display table 91 in preparation for drawing of an hour image based on the time information acquired in step S20 and reads a macro name from the hour display position adjustment table 92 based on the adjustment number to prepare a necessary macro instruction (S40). The macro instruction also contains the image deletion macro instruction.
Similarly, the computation IC 10 reads a macro name from the minute display table 90 in preparation for drawing of a minute image based on the time information acquired in step S20 to prepare a necessary macro instruction (S50). The macro instruction also contains the image deletion macro instruction.
The computation IC 10 then transmits an instruction to execute the image deletion macro instruction to the drawing IC 30 to instruct the drawing IC 30 to transfer image data to the display section 4 and drive the display section 4 (S60). The drawing IC 30 deletes the image in the display section 4 based on the macro instruction.
The computation IC 10 then transmits an instruction to execute the new image drawing macro instruction to the drawing IC 30 to instruct the drawing IC 30 to transfer image data to the display section 4 and drive the display section 4 (S70). The drawing IC 30 updates the image in the display section 4 based on the macro instruction.
The computation IC 10 then transitions from the normal action mode to the sleep mode (S80) and is in standby until the computation IC 10 receives the measurement completion signal (interrupt signal) from the real time clock IC 20 (N in S90).
When the timer 22 completes the measurement, the real time clock IC 20 transmits the measurement completion signal (interrupt signal) to the computation IC 10. Having received the measurement completion signal (interrupt signal) (Y at A90), the computation IC 10 transitions from the sleep mode to the normal action mode (S100) and carries out the processes in step S10 and the following steps again.
The process of adjusting the display position of hour image data in the present embodiment will next be described with reference to
For example, when it is 8:33, and “Eight” of the hour image data 70 is disposed in a standard position, a lower portion of the character “g” of “Eight” undesirably overlaps with the first character “t” of “thirty-three” of the minute image data 80, as shown in
To avoid the situation described above, in the present embodiment, two types of hour image data 70 of “Eight” are prepared as shown in
The hour image data 70 of “Eight” shown in
In the present embodiment, the hour image data 70 shown in
The configuration described above allows the displayed hour and minute in a case where it is, for example, 8:33 to be legible with no overlap between the font of the hour image data 70 and the font of the minute image data 80, as shown in
The two types of hour image data 70 of “Eight” are appropriately used as follows: First, the hour display table 91 describes the adjustment numbers corresponding to the hour of 8 as follows: The adjustment number is “22” over a range from 8:00 to 8:29 and a range from 8:40 to 8:59; and the adjustment number is “13” over a range from 8:30 to 8:39, as shown in
In the hour display position adjustment table 92 shown in
Therefore, when the time to be displayed falls within the range from 8:00 to 8:29 or the range from 8:40 to 8:59, the computation IC 10 reads “22” as the adjustment number from the hour display table 91 and reads the macro name EMAC_APPEND_A022 from the hour display position adjustment table 92. The computation IC 10 then reads the macro instruction corresponding to the macro name EMAC_APPEND_A022 from the flash ROM 32 and outputs the macro instruction to the drawing IC 30. The drawing IC 30 executes the macro instruction corresponding to the macro name EMAC_APPEND_A022 to draw the image data HOUR_B_08.bmp as the hour image data 70. In this process, the drawing is so performed that the XY coordinates of the origin of the image data are (X08, Y08), that is, coordinates of a first position. HOUR_B_08.bmp corresponds to the hour image data 70 of “Eight” shown in
As described above, the hour display table 91 contains information (adjustment number) that identifies, as a display position of a numeral specified by hour image data via the hour display position adjustment table 92, a position different from a predetermined standard position in accordance with the hour and minute even during the same hour.
On the other hand, when the time to be displayed falls within the range from 8:30 to 8:39, the computation IC 10 reads “13” as the adjustment number from the hour display table 91 and reads EMAC_APPEND_A013 as the macro name from the hour display position adjustment table 92. The computation IC 10 then reads the macro instruction corresponding to the macro name EMAC_APPEND_A013 from the flash ROM 32 and outputs the macro instruction to the drawing IC 30. The drawing IC 30 executes the macro instruction corresponding to the macro name EMAC_APPEND_A013 to draw the image data HOUR_B_13.bmp as the hour image data 70. In this process, the drawing is so performed that the XY coordinates of the origin of the image data are (X13, Y13), that is, the coordinates of a second position that differs from the first position. HOUR_B_13.bmp corresponds to the hour image data 70 of “Eight” shown in
Further, when the time to be displayed falls within the range from 20:00 to 20:29 or the range from 20:40 to 20:59, the computation IC 10 reads “35” as the adjustment number from the hour display table 91 and reads EMAC_APPEND_A035 as the macro name from the hour display position adjustment table 92. The computation IC 10 reads the macro instruction corresponding to the macro name EMAC_APPEND_A035 from the flash ROM 32 and outputs the macro instruction to the drawing IC 30. The drawing IC 30 executes the macro instruction corresponding to the macro name EMAC_APPEND_A035 to draw the image data HOUR_B_08.bmp as the hour image data 70. In this process, the drawing is so performed that the XY coordinates of the origin of the image data are (X08, Y08), that is, the coordinates of the first position.
On the other hand, when the time to be displayed falls within the range from 20:30 to 20:39, the computation IC 10 reads “26” as the adjustment number from the hour display table 91 and reads EMAC_APPEND_A026 as the macro name from the hour display position adjustment table 92. The computation IC 10 then reads the macro instruction corresponding to the macro name EMAC_APPEND_A026 from the flash ROM 32 and outputs the macro instruction to the drawing IC 30. The drawing IC 30 executes the macro instruction corresponding to the macro name EMAC_APPEND_A026 to draw the image data HOUR_B_13.bmp as the hour image data 70. In this process, the drawing is so performed that the XY coordinates of the origin of the image data are (X13, Y13), that is, the coordinates of the second position, which differs from the first position. HOUR_B_13.bmp corresponds to the hour image data 70 of “Eight” shown in
The present embodiment has been described with reference to the case where two types of hour image data 70 of “Eight” are prepared by way of example. Instead, three or more types of hour image data 70 may be prepared for the display of the same hour. Further, the present embodiment has been described with reference to the hour image data 70 of “Eight” corresponding to the display of the hour of 8 by way of example, and a plurality of types of hour image data 70 corresponding to other hours may also be prepared when a font used in the display of the other hours has an elongated portion. Further, a plurality of types of minute image data 80 may also be prepared, and minute image data 80 having a different font position may be used in accordance with the time to be displayed.
Further, in the present embodiment, hour image data is so prepared that the origin 73 thereof is set in a position separate from the standard position of “Eight,” which is the origin 71 of the hour image data itself, but the origin 73 only needs to be set in a position where “Eight” is displayed appropriately in an aesthetic sense.
Further, the present embodiment has been described with reference to the case where two types of hour image data 70 in which the coordinates of the font “Eight” differ between the two types are prepared by way of example. Instead, only one type of hour image data 70 may be prepared, and the origin 71 of the hour image data 70 may be shifted in accordance with the minute image data 80, which is displayed simultaneously with the hour image data 70. Similarly, the origin of the minute image data 80 may be shifted in accordance with the hour image data 70, which is displayed simultaneously with the minute image data 80.
Further the present embodiment has been described with reference to the case where the numerals from 1 to 12 corresponding to the hours are expressed in English as one, two, . . . , twelve by way of example. Instead, the invention is also applicable to a case where the numerals from 0 to 23 corresponding to the hours are expressed in English as zero, one, two, . . . , twenty three.
Further, in the present embodiment, the minute display table, the hour display position adjustment table, and the hour display table are used to allow the display position of the same hour image data to be changed in accordance with the minute to be displayed. Similarly, a minute display table and a minute display position adjustment table having the same configurations as those of the hour display table and the hour display position adjustment table may be created, and the display position of the same minute image data may be changed in accordance with the hour to be displayed.
As described above, the present embodiment, in which the hour display table contains information that identifies, as a display position of a numeral specified by hour image data or minute image data, a position different from a predetermined standard position even for the same hour or minute in accordance with the hour and minute to be displayed, prevents overlap between fonts and allows legible hour and minute display.
A second embodiment of the invention will be described with reference to
In the present embodiment, hour image data 70 shown in
To avoid the situation described above, in the present embodiment, in addition to the standard hour image data 70 corresponding to the hour of 6, hour image data 70 shown in
Using the hour image data 70 described above eliminates the portion where “Six” representing the hour of six and “fifty-eight” representing the minute of 58 overlap with each other and therefore allows legible time display, as shown in
To achieve the configuration of the present embodiment, for example, “12” is added as the adjustment number to the hour display position adjustment table 92 shown in
That is, the hour display table 91 contains information (adjustment number) that identifies, as the hour image data 70, the hour image data 70 (HOUR_B_12.bpm) different from the predetermined standard hour image data 70 (HOUR_B_06.bpm) in accordance with the minute to be displayed even during the same hour, for example, the minute of 29 or 30 during the same hour of 8.
In the hour display table 91 shown in
The present embodiment has been described with reference to the case where two types of hour image data 70 having different fonts are prepared as the hour image data 70 of “Six” by way of example. Instead, hour image data 70 using three or more types of fonts may be prepared for the display of the same hour. Further, the present embodiment has been described with reference to the hour image data 70 of “Six” corresponding to the display of the hour of 6 by way of example, and a plurality of types of hour image data 70 corresponding to other hours and using different fonts may also be prepared. Further, a plurality of types of minute image data 80 having different fonts may also be prepared, and the minute image data 80 having fonts themselves different from one another may be used in accordance with the time to be displayed.
In the present embodiment, each of the hour image data 70 and the minute image data 80 is image data for drawing characters of a word representing a numeral. Now, let an x direction be the direction in which the characters are arranged, and a y direction be the direction perpendicular to the x direction. The hour image data 70 and the minute image data 80 are so displayed in the display area of the display section 4 that the coordinates thereof (origin 71 of hour image data 70 and origin 81 of minute image data 80) in the y direction differ from each other, as shown in
As described above, the present embodiment, in which the hour display table contains information that identifies, as the hour image data, hour image data different from predetermined standard hour image data in accordance with the hour and minute to be displayed even during the same hour, prevents overlap between fonts and allows legible hour and minute display.
A third embodiment of the invention will be described with reference to
As shown in
Similarly, in hour image data, second hour image data 70-2 on the ones place ranging from 0 to 9 is formed of an image 70c, which represents a numeral corresponding to the ones place of the hour, integrated with an image 70d of bird eggs, which is a non-numeral image. In
As shown in
Similarly, in the minute image data, minute image data 80-2 on the ones place ranging from 0 to 9 is formed of an image 80c, which represents a numeral corresponding to the ones place of the minute, integrated with an image 80d of an owl, which is a non-numeral image. The owl drawn as the image 80d is an owl of a kind different from the owl drawn as the image 80b in the tens place of the minute. In
In the present embodiment, a partition image data 75, which represents footmarks of an owl, is drawn to partition the entire display into the hour display and the minute display, as shown in
As described above, in the present embodiment, in which images of numerals for time display are accompanied by non-numeral images, and the non-numeral images combined with the numerals in hour/minute digits are different from one another, diversity in the time display can be provided.
Further, in the present embodiment, the X and Y coordinates of an origin 71-1 of the first hour image data 70-1 are set to differ from those of an origin 71-2 of the second hour image data 70-2. Similarly, the X and Y coordinates of an origin 81-1 of the first minute image data 80-1 are set to differ from those of an origin 81-2 of the second minute image data 80-2. The positions of the coordinates of the origins are not fixed, but the positions of the coordinates of the origin of the image data at each digit change as the image data changes. As described above, in the present embodiment, not only is an image of a numeral for time display combined with a non-numeral image, but also the positions of the coordinates of the origin of each image data is changed, whereby diverse, non-stationary time display can be performed.
In the present embodiment, to perform the display described above, the hour display table 91 and the minute display table 90 are configured as follows:
As shown in
Further, in the present embodiment, even when the tens-place numeral and the ones-place numeral are the same, such as “11”, the image names, the macro names, and the XY coordinates thereof differ from each other. Instead, when the tens-place numeral and the ones-place numeral are the same, the same image name, macro name, and XY coordinates may be used.
As shown in
The ones-place image names, macro names, and XY coordinates are, however, set to be the same for combinations of the same ones-place numeral and different tens-place numerals combined therewith. For example, at “the minute of 02,” “the minute of 12,” and “the minute of 22,” the ones-place image name is MINUTE_C_002L.bmp, the ones-place macro name is EMAC_MINUTE_C_A02L, and the ones-place XY coordinates are X023, Y023. Instead, when the ones-place numeral is the same but the tens-place numeral combined therewith is different, the ones-place image names, macro names, and XY coordinates may be different from one another.
Further, in the present embodiment, when the tens-place numeral and the ones-place numeral are the same, such as “11”, the image names, the macro names, and the XY coordinates thereof differ from each other. Instead, when the tens-place numeral and the ones-place numeral are the same, the same image name, macro name, and XY coordinates may be used.
As described above, according to the present embodiment, the hour display table 91 describes the first hour image data 70-1, which is drawn as a single image formed of an image representing the numerals from 1 to 2 corresponding to the tens place of each hour and a non-numeral image that changes whenever the numeral corresponding to the tens place changes, and the second hour image data 70-2, which is drawn as a single image formed of an image representing the numerals from 0 to 9 corresponding to the ones place of each hour and a non-numeral image that changes whenever the numeral corresponding to the ones place changes.
Further, the minute display table 90 describes the first minute image data 80-1, which is drawn as a single image formed of an image representing the numerals from 0 to 5 corresponding to the tens place of each minute and a non-numeral image that changes whenever the numeral corresponding to the tens place changes, and the second minute image data 80-2, which is drawn as a single image formed of an image representing the numerals from 0 to 9 corresponding to the ones place of each minute and a non-numeral that changes whenever the numeral corresponding to the ones place changes.
The hour display table 91 and the minute display table 90 include combinations of the following information used when predetermined time is displayed: information (image name) that identifies the first hour image data 70-1 and the second hour image data 70-2 as well as the first minute image data 80-1 and the second minute image data 80-2; and information (X coordinate and Y coordinate) that identifies the display position of the first hour image data 70-1 and the second hour image data 70-2 and the display position of the first minute image data 80-1 and the second minute image data 80-2.
Therefore, in the present embodiment, in which images of numerals for time display are accompanied by non-numeral images, and the non-numeral images combined with the numerals in hour/minute digits are different from one another, diversity in the time display can be provided. Further, in the present embodiment, not only is an image of a numeral for time display combined with a non-numeral image, but also the positions of the coordinates of the origin of each image data is changed, whereby diverse, non-stationary time display can be performed.
In the present embodiment, an image relating to a bird is employed as the image of an object other than the numerals representing time. Instead, an image of an animation character, an image of another animal, an image of a plant, an image of a food product, and a variety of other images can be employed. Further, the font of the numerals representing time may be changed as appropriate.
A fourth embodiment of the invention will be described with reference to
The hour image data 70 in the present embodiment is image data having an image 70a formed only of a font representing the numerals ranging from 0 to 23 corresponding to the hours, as shown in
The non-numeral image 80b varies whenever the minute changes. For example, the non-numeral image 80b is displayed below the image 80a of the font representing the numerals ranging from 00 to 59 corresponding to the minutes as shown in
Although not shown, in the present embodiment, an hour display table 91, which records an image name, a macro name, and XY coordinates corresponding to each of the hours from 0 to 23, may be provided, and the image name, the macro name and XY coordinates may be changed in correspondence with the hour that advances. Further, a minute display table 90, which records an image name, a macro names, and XY coordinates corresponding to each of the minutes from 00 to 59, may be provided, and the image name, the macro name, and the XY coordinates may be changed in correspondence with the minute that advances.
As described above, the present embodiment, which uses, as the minute image data 80, minute image data 80 that is drawn as a single image formed of the image 80a representing the numerals corresponding to the minutes and the non-numeral image 80b that changes whenever the minute advances, allows diverse time display. Further, the coordinates of the origin 81 of the minute image data 80 can be changed in correspondence with the minutes, whereby diverse, non-stationary time display can be performed.
In the minute image data 80, in addition to the aspects shown in
In the present embodiment, an image relating to a bird is employed as the image of an object other than the numerals representing time. Instead, an image of an animation character, an image of another animal, an image of a plant, an image of a food product, and a variety of other images can be employed. Further, the font of the numerals representing time may be changed as appropriate.
Variations
The invention is not limited to the embodiments described above, and a variety of variations, for example, those that will be described below, are conceivable. Further, one or more arbitrarily selected aspects of the variations that will be described below can be combined with each other as appropriate.
Variation 1
In the first embodiment, the description has been made of the case where the numeral corresponding to each hour is expressed, for example, in English, but the invention is not limited to the aspect and is also applicable to a case where the numerals are expressed in another language. Further, the invention is also applicable to a case where the numeral corresponding to each hour is expressed, for example, by using any of a variety of numerical letters.
In the second to fourth embodiments, the description has been made of the case where the hours are displayed by using 0 to 23, but the invention is not limited to the aspect and the hours may instead be displayed by using 1 to 12 accompanied by AM/PM displayed therewith as shown in the first embodiment.
Variation 2
The hour image data and the minute image data may be rotated before displayed, as in an analog timepiece having an hour hand and a minute hand. For example, hour image data that is a combination of an image representing the numeral corresponding to each hour and an animation character image may be rotationally moved every hour. In this case, the animation character may express daily activities, for example, the animation character wakes up at a certain hour in the morning, takes a lunch at a certain hour in the afternoon, and does a job during daytime. Further, the expression and action of the animation character may be changed whenever the date or day advances.
Moreover, when the minute image data is rotationally moved, animation characters may be so displayed that they chase one another.
Variation 3
In each of the above embodiments and variations, the description has been made with reference to the configuration in which a table is used to select an image and XY coordinates used in the image drawing, but the invention is not limited to the configuration. For example, a function may be used to calculate the trajectories of the coordinates of the origins of the hour image data and/or the minute image data, and the origins of the hour image data and/or the minute image data may be moved along the calculated trajectories.
An example of an electronic apparatus to which the invention is applied will be shown below.
An electronic apparatus to which the invention is applied is not limited to those described above by way of example. For example, the invention can be employed in a portable phone and timepiece (wristwatch), a portable audio reproduction apparatus, an electronic notebook, a display apparatus on which a touch panel is mounted, a sport apparatus worn around a wrist, a wearable apparatus, and a variety of other electronic apparatus.
Further, the display section according to any of the embodiments of the invention is not necessarily used in an electrophoretic display device and can instead be used in an electrochromic display apparatus having a memory function or a liquid crystal display apparatus.
The entire disclosure of Japanese Patent Application No. 2015-023800, filed Feb. 10, 2015 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2015-023800 | Feb 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6714486 | Biggs | Mar 2004 | B2 |
7843769 | Ishida | Nov 2010 | B2 |
8237653 | Maeda et al. | Aug 2012 | B2 |
8319726 | Kajino | Nov 2012 | B2 |
20050185519 | Kent | Aug 2005 | A1 |
20070183268 | Hong | Aug 2007 | A1 |
20130142016 | Pozzo Di Borgo | Jun 2013 | A1 |
20140071183 | Murayama | Mar 2014 | A1 |
20140320468 | Murayama | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2004-028918 | Jan 2004 | JP |
2010-044397 | Feb 2010 | JP |