1. Statement of the Technical Field
The present invention relates generally to Electronic Article Surveillance (“EAS”) systems. More particularly, the present invention relates to EAS systems implementing methods for determining security tag locations relative to transceiver pedestals thereof.
2. Description of the Related Art
Electronic article surveillance (EAS) systems generally comprise an interrogation antenna for transmitting an electromagnetic signal into an interrogation zone, markers which respond in some known electromagnetic manner to the interrogation signal, an antenna for detecting the response of the marker, a signal analyzer for evaluating the signals produced by the detection antenna, and an alarm which indicates the presence of a marker in the interrogation zone. The alarm can then be the basis for initiating one or more appropriate responses depending upon the nature of the facility. Typically, the interrogation zone is in the vicinity of an exit from a facility such as a retail store, and the markers can be attached to articles such as items of merchandise or inventory.
One type of EAS system utilizes acoustomagnetic (AM) markers. The general operation of an AM EAS system is described in U.S. Pat. Nos. 4,510,489 and 4,510,490, the disclosure of which is herein incorporated by reference. The detection of markers in an AM EAS system by pedestals placed at an exit has always been specifically focused on detecting markers only within the spacing of the pedestals. However, the interrogation field generated by the pedestals may extend beyond the intended detection zone. For example, a first pedestal will generally include a main antenna field directed toward a detection zone located between the first pedestal and a second pedestal. When an exciter signal is applied at the first pedestal it will generate an electro-magnetic field of sufficient intensity so as to excite markers within the detection zone. Similarly, the second pedestal will generally include an antenna having a main antenna field directed toward the detection zone (and toward the first pedestal). An exciter signal applied at the second pedestal will also generate an electromagnetic field with sufficient intensity so as to excite markers within the detection zone. When a marker tag is excited in the detection zone, it will generate an electromagnetic signal which can usually be detected by receiving the signal at the antennas associated with the first and second pedestal.
It is generally desirable to direct all of the electromagnetic energy from each pedestal exclusively toward the detection zone between the two pedestals. As a practical matter, however, a certain portion of the electromagnetic energy will be radiated in other directions. For example, an antenna contained in an EAS pedestal will frequently include a backfield antenna lobe (“backfield”) which extends in a direction which is generally opposed from the direction of the main field. It is known that markers present in the backfield of antennas associated with the first or second pedestal may emit responsive signals, and create undesired alarms.
Several techniques have been implemented in the past to eliminate alarms causes by the backfield. One approach involves configuring the antenna in each pedestal in a manner which minimizes the actual extent of the backfield. Other solutions can involve changing from the traditional dual-transceiver pedestal to a TX pedestal/RX pedestal system, alternating TX/RX modes, and physical shielding of the antenna pedestals. A further approach involves correlating video analytics with marker signals. An ideal solution to the backfield problem is one which does not alter the detection performance of a system in a negative manner. For instance, although a system in which only one pedestal transmits and the other pedestal receives can reduce undesired alarms, pedestal separation in such a system must be reduced to accomplish the desired backfield reduction.
The present invention concerns implementing systems and methods for detecting a location of an EAS relative to an EAS detection system. The methods involve determining a first amplitude of a response signal generated by the EAS security tag and received at a first pedestal, and a second amplitude of the response signal received at a second pedestal spaced apart from the first pedestal. The first and second amplitudes are then processed to determine whether the EAS security tag resides within a specified distance range of the first or second pedestal, a detection zone of an EAS detection system, or a backfield of the EAS detection system. An alarm is issued when the EAS security tag is determined to reside within the specified distance range of the first or second pedestal or the detection zone of the EAS detection system. Issuance of the alarm is prevented when the EAS security tag is determined to reside in the backfield of the EAS detection system.
In some scenarios, the processing comprises: identifying which of the first and second amplitudes has the highest relative value; and determining whether the highest relative value exceeds a first threshold value. The alarm is issued when the highest relative value exceeds the first threshold value. The first threshold value is selected to facilitate an identification of an EAS security tag located within the specified distance range of a pedestal.
The processing may also comprise: computing a first ratio between the first and second amplitudes; and determining whether the first ratio exceeds a second threshold value. Issuance of the alarm is prevented when the first ratio is greater than a second threshold value. The second threshold value is selected to facilitate an identification of an EAS security tag located within the backfield of the EAS detection system.
The processing may further comprise: computing a second ratio between the first or second amplitude with the lowest value and an antenna mean noise amplitude for a corresponding one of the first and second pedestals; and determining if the second ratio is less than a third threshold value. The alarm is issued when the first ratio is less than the second threshold value and the second ratio is greater than a third threshold value. The third threshold value is selected to facilitate a detection of a false alarm condition.
Embodiments will be described with reference to the following drawing figures, in which like numerals represent like items throughout the figures, and in which:
It will be readily understood that the components of the embodiments as generally described herein and illustrated in the appended figures could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by this detailed description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussions of the features and advantages, and similar language, throughout the specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize, in light of the description herein, that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
Reference throughout this specification to “one embodiment”, “an embodiment”, or similar language means that a particular feature, structure, or characteristic described in connection with the indicated embodiment is included in at least one embodiment of the present invention. Thus, the phrases “in one embodiment”, “in an embodiment”, and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
As used in this document, the singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. As used in this document, the term “comprising” means “including, but not limited to”.
The present invention generally provides a technique for identifying the approximate location of an EAS security tag with sufficient granularity to determine if the EAS security tag is located between a pair of EAS pedestals or behind one of the EAS pedestals in the “backfield.” The idea is to use detected amplitudes of signals respectively received at the pedestals and calculate a ratio of these detected amplitudes. The ratio indicates whether the EAS security tag is located between the pair of EAS pedestals or behind one of the EAS pedestals. For example, if the EAS security tag is at the center of an interrogation zone (i.e., the detection zone between the EAS pedestals), then the ratio will equal one. In contrast, if the EAS security tag moves towards one of the EAS pedestals, then the ratio will equal a value greater than one. A ratio range is then used to identify the interrogation zone between the EAS pedestals. In effect, the present invention provides a way to reduce undesired alarms of an EAS detection system having at least two transceiver pedestals between which an interrogation zone (or detection zone) is defined.
Notably, the solution of the present invention can be entirely implemented in software. As such, the present invention does not add new hardware or additional cost to existing EAS detection systems. Additionally, the present invention can also be readily ported to older EAS detection systems to enhance their performance accordingly. Furthermore, the present invention does not alter the detection performance of an EAS detection system in a negative manner.
Referring now to
The EAS detection system 100 will be positioned at a location adjacent to an entry/exit 104 of a secured facility (e.g., a retail store). The EAS detection system 100 uses specially designed EAS marker tags (“security tags”) which are applied to store merchandise or other items which are stored within a secured facility. The security tags can be deactivated or removed by authorized personnel at the secure facility. For example, in a retail environment, the security tags could be removed by store employees. When an active security tag 112 is detected by the EAS detection system 100 in an idealized representation of an EAS detection zone 108 near the entry/exit, the EAS detection system will detect the presence of such security tag and will sound an alarm or generate some other suitable EAS response. Accordingly, the EAS detection system 100 is arranged for detecting and preventing the unauthorized removal of articles or products from controlled areas.
The EAS detection system 100 includes a pair of pedestals 102a, 102b, which are located a known distance apart (e.g., at opposing sides of entry/exit 104). The pedestals 102a, 102b are typically stabilized and supported by a base 106a, 106b. The pedestals 102a, 102b will each generally include one or more antennas that are suitable for aiding in the detection of the special EAS security tags, as described herein. For example, pedestal 102a can include at least one antenna 302 suitable for transmitting or producing an electromagnetic exciter signal field and receiving response signals generated by security tags in the detection zone 108. In some embodiments, the same antenna can be used for both receive and transmit functions. Similarly, pedestal 102b can include at least one antenna 402 suitable for transmitting or producing an electromagnetic exciter signal field and receiving response signals generated by security tags in the detection zone 108. The antennas provided in pedestals 102a, 102b can be conventional conductive wire coil or loop designs as are commonly used in AM type EAS pedestals. These antennas will sometimes be referred to herein as exciter coils. In some embodiments, a single antenna can be used in each pedestal. The single antenna is selectively coupled to the EAS receiver. The EAS transmitter is operated in a time multiplexed manner. However, it can be advantageous to include two antennas (or exciter coils) in each pedestal as shown in
The antennas located in the pedestals 102a, 102b are electrically coupled to a system controller 110. The system controller 110 controls the operation of the EAS detection system 100 to perform EAS functions as described herein. The system controller 110 can be located within a base 106a, 106b of one of the pedestals 102a, 102b or can be located within a separate chassis at a location nearby to the pedestals. For example, the system controller 110 can be located in a ceiling just above or adjacent to the pedestals 102a, 102b.
As noted above, the EAS detection systems comprises an AM type EAS detection system. As such, each antenna is used to generate an Electro-Magnetic (“EM”) field which serves as a security tag exciter signal. The security tag exciter signal causes a mechanical oscillation of a strip (e.g., a strip formed of a magnetostrictive or ferromagnetic amorphous metal) contained in a security tag within a detection zone 108. As a result of the stimulus signal, the security tag will resonate and mechanically vibrate due to the effects of magnetostriction. This vibration will continue for a brief time after the stimulus signal is terminated. The vibration of the strip causes variations in its magnetic field, which can induce an AC signal in the receiver antenna. This induced signal is used to indicate a presence of the strip within the detection zone 108. As noted above, the same antenna contained in a pedestal 102a, 102b can serve as both the transmit antenna and the receive antenna. Accordingly, the antennas in each of pedestals 102a, 102b can be used in several different modes to detect a security tag exciter signal. These modes will be described below in further detail.
Referring now to
The antenna field pattern 300 shown in
The overlapping antenna field patterns 300, 400 in
Referring now to
As shown in
Next in step 610, the amplitudes AMP102a and AMP102b are analyzed to identify which of the pedestals 102a or 102b is associated with the highest valued amplitude. In this regard, each amplitude can be previously stored in a table format so as to be associated with the corresponding pedestal. In this case, step 610 involves: comparing the amplitudes AMP102a and AMP102b to each other to determine which one has the highest value; and accessing a table to obtain information specifying which pedestal is associated with the highest valued amplitude. For example, if amplitude AMP102a has the highest value, then pedestal 102a would be identified in step 610. In contrast, if amplitude AMP102b has the highest value, then pedestal 102b would be identified in step 610.
Upon identifying a pedestal in step 610, a decision step 612 is performed where it is determined if the highest valued amplitude (e.g., amplitude AMP102a) is greater than a first threshold value thr1. The first threshold value thr1 is selected such that it is less than an amplitude AMP102a or AMP102b of a response signal transmitted from an EAS security tag located at a position less than N feet from the corresponding pedestal, where N is any number falling in a given range (e.g., 0 feet to 1.5 feet). If the highest valued amplitude (e.g., amplitude AMP102a) is greater than a first threshold value thr1 [612:YES], then an alarm is issued in step 614.). If the highest valued amplitude (e.g., amplitude AMP102a) is less than a first threshold value thr1 [612:YES], then method 600 continues with step 616.
In step 616, a first ratio is computed between the two amplitudes AMP102a and AMP102b. A mathematical equation (1) defining the first ratio is now provided.
R
1=AMPHighestValue/AMPLowestValue (1)
where R1 represents the first ratio, AMPHighestValue represents an amplitude with the highest value (e.g., AMP102a), and AMPLowestValue represents an amplitude with the lowest value (e.g., AMP102b).
If the two amplitudes AMP102a and AMP102b have the same value, then the first ratio R1 equals one. As shown in
If amplitude AMP102a has a higher value than amplitude AMP102b, the first ratio R1 is defined by mathematical equation (2).
R
1=AMP102a/AMP102b (2)
Accordingly, the first ratio R1 has a value greater than one. As shown in
If the amplitude AMP102b has a higher value than amplitude AMP102a, the first ratio R1 is defined by mathematical equation (3).
R
1=AMP102b/AMP102a (3)
Accordingly, the first ratio R1 has a value greater than one. As shown in
Referring again to
As shown in
Step 620 is generally performed to ensure that certain conditions do not cause issuance of a false alarm. An exemplary false alarm condition is readily understood with reference to
Accordingly, steps 620-622 implement one method for detecting such a false alarm condition. In this regard, step 620 involves computing a second ratio R2 between the lowest valued amplitude and a mean noise amplitude AMPMeanNoise of the corresponding pedestal antenna 302 or 402. For example, if the amplitude of a signal (e.g., response signal and/or noise signal) received at pedestal 102b has a relatively low value, than the second ratio R2 is computed using the mean noise amplitude for antenna 402. When the second ratio R2 is greater than a third threshold value thr3, the alarm is issued as shown by step [622:YES]. When the second ratio R2 is less than a third threshold value thr3, method 600 returns to step 604 such that the detection zone continues to be monitored.
Referring now to
The system also includes at least one EAS transceiver 808, including transmitter circuitry 810 and receiver circuitry 812. The transmitter and receiver circuitry are electrically coupled to antenna 302 and the antenna 402. A suitable multiplexing arrangement can be provided to facilitate both receive and transmit operation using a single antenna (e.g. antenna 302 or 402). Transmit operations can occur concurrently at antennas 302, 402 after which receive operations can occur concurrently at each antenna to listen for marker tags which have been excited. Alternatively, transmit operations can be selectively controlled as described herein so that only one antenna is active at a time for transmitting security tag exciter signals for purposes of executing the various algorithms described herein. The antennas 302, 402 can include an upper and lower antenna similar to those shown and described with respect to
Additional components of the system controller 110 can include a communication interface 824 configured to facilitate wired and/or wireless communications from the system controller 110 to a remotely located EAS system server. The system controller can also include a real-time clock, which is used for timing purposes, an alarm 826 (e.g. an audible alarm, a visual alarm, or both) which can be activated when an active EAS security tag is detected within the EAS detection zone 108. A power supply 828 provides necessary electrical power to the various components of the system controller 110. The electrical connections from the power supply to the various system components are omitted in
Those skilled in the art will appreciate that the system controller architecture illustrated in
Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.