The present invention relates to an electronic ballast for operating at least one discharge lamp, including an input having a first and a second input connection for coupling to a DC supply voltage, an output having a first and a second output connection for coupling to the at least one discharge lamp, an inverter having a bridge circuit with at least one first and one second electronic switch and a control device for controlling at least the first and the second electronic switch such that the first and the second electronic switch are alternately rendered conducting at a first frequency, wherein the first and the second switch are connected in series between the first and the second input connection, wherein the first electronic switch is coupled to the first input connection and the second electronic switch is coupled to the second input connection, wherein a first bridge midpoint is implemented between the first and the second electronic switch, a current measuring device for measuring the current at least through the second electronic switch, a lamp choke which is connected in series between the first bridge midpoint and the first output connection, at least one trapezoidal capacitor which is connected in parallel with one of the two electronic switches and at least one coupling capacitor for coupling the load, wherein the control device is coupled to the current measuring device and is designed to render the second electronic switch conducting, either if a predefinable negative threshold value of the current through the second electronic switch is exceeded after the first electronic switch has been rendered nonconducting or after a predefinable time if the predefinable negative threshold value of the current through the second electronic switch is not exceeded after the first electronic switch has been rendered nonconducting. It also relates to a corresponding method for operating a discharge lamp.
Known as multi-lamp EBs, electronic ballasts designed to operate different lamps, particularly lamps of different wattages, have been commercially available for some time. One problem in this context is that of ensuring soft switching of the inverter bridge circuit in the case of different loads.
In the following description it will be assumed that the inverter is equipped with a half bridge. As will be immediately obvious to the person skilled in the art, the following description is equally applicable to inverters with switches in a full-bridge configuration.
In a prior art Infineon controller for discharge lamps, switching during the conducting phase of the freewheeling diode via the second electronic switch is ensured as follows: the current in the lower branch of the bridge is measured using a half bridge shunt resistor. The undershooting of a negative threshold of the current is equated with the point in time at which the freewheeling diode of the lower switching element becomes conducting. This event triggers the closure of the lower half bridge switch and therefore determines the dead time of the control signals for the switches of the half bridge.
This form of control is problematic when the bridge circuit is operated at a frequency immediately above the phase shift, i.e. above the transition from inductive operation to capacitive operation at high loads. In this operating mode, the available current for recharging the trapezoidal capacitor may be very small. This poses the risk that the negative threshold of the current through the half bridge shunt resistor will not be reached. In this case the dead time control known from the prior art adjusts the maximum dead time, i.e. a maximum specifiable time duration. As a result, the switching operation of the lower half bridge switch is executed after the flow of current through the freewheeling diode has already been terminated. Since at this point in time the voltage across the lower half bridge switch is non-zero, the lower switch of the half bridge no longer operates in a soft-switched manner. This results in undesirable switching losses and overloading of the transistors involved. The latter results, among other things, in a reduction in the service life of electronic ballasts of this kind.
In order nevertheless to ensure reliable soft switching of the half bridge, the resonant circuit normally present can be designed with large resonant capacitances. However, this measure results in increased reactive currents and therefore undesirably large losses in the inverter.
The object underlying the present invention is therefore to further develop a generic electronic ballast and a generic method such that soft switching with minimal losses can be provided at different connected loads even when the electronic ballast is operated close to the phase shift.
This object is achieved by an electronic ballast having the features set forth in claim 1 and by a method having the features set forth in claim 11.
The present invention is based on the insight that the above problem can be solved if, when determining a switching operation after the maximum dead time has been attained, the frequency at which the switches of the half bridge are operated is increased. Increasing this frequency causes the operating frequency to be shifted from a transition frequency between capacitive and inductive operation in the direction of inductive operation. This results in a larger negative current amplitude when the current is transferred through the freewheeling diode of the lower switch. If the operating frequency of the two switches is increased to the extent that the predefinable negative threshold value of the current through the lower switch is again exceeded, the known dead time control will operate again; soft operation of the inverter switches can be ensured.
This solution works without increasing the capacitance of the resonant capacitor and therefore involves no additional losses.
Each of the two electronic switches includes a control electrode, a working electrode and a reference electrode. It can now be provided that a discrete diode is connected as a freewheeling diode in parallel with the working electrode—reference electrode section or that the freewheeling diode constitutes a body diode of the electronic switch. The latter is the case, for example, if MOSFETs are used as switches.
The control device of an electronic ballast according to the invention preferably contains a memory in which the predefinable time is stored. In particular, this opens up the possibility of modifying this time on a lamp-specific basis as required.
It is also preferable for the control device to incorporate a time measuring device in order to determine the time from the first electronic switch being rendered nonconducting to the second electronic switch being rendered conducting.
The control device is preferably designed to execute the following step: c1) If the time measured is equal to the predefinable time: increase the first frequency by a predefinable increment. In this context the control device is preferably also designed to execute the following step: c2) Repeat c1) in any case until the time measured is less than the predefinable time. Altogether this causes the operating frequency of the switches of the half bridge to be increased in predefinable stages until the dead time no longer corresponds to the maximum dead time. As overly increasing the operating frequency of the switches of the half bridge would reduce the power transferable to the lamp, this procedure constitutes an optimum compromise between soft operation of the switches of the half bridge and transferring maximum power to the connected lamp.
The control device is also preferably designed to execute the following step: d1) If the measured time is less than the predefinable time: reduce the first frequency by a predefinable increment. In this regard the control device is preferably also designed to execute the following step: d2) Repeat step d1) until a predefinable value for the first frequency is reached. These measures in particular allow for the situation when initially a discharge lamp of higher power or rather higher lamp voltage is connected to the output of the electronic ballast, said lamp voltage reducing again during operation as a result of temperature effects. If the operating frequency for the half bridge switches which has occurred during operation of the higher power lamp were to be maintained, less power than actually possible would be transferred to the lower voltage lamp. By progressively reducing the operating frequency of the switches of the half bridge it can be ensured that, on the one hand, the switches are operated in a soft manner and that, on the other hand, maximum power is transmitted to the discharge lamp connected to the output of the electronic ballast. In this context, algorithms for selecting the increment size can be implemented which only very rarely cause the half bridge switches to operate in a non-soft manner, e.g. every 100th or 1000th switching operation. Such infrequent non-soft switching only results in insignificant losses, but allows optimized operation of the electronic ballast in respect of power transfer.
Further advantageous embodiments will emerge from the sub-claims.
The preferred embodiments and their advantages set forth in respect of the electronic ballast according to the invention equally apply where applicable to the method according to the invention.
An exemplary embodiment of the electronic ballast according to the invention will now be described in greater detail with reference to the accompanying drawings in which:
The electronic ballast shown in
A first half bridge midpoint HBM is implemented between the switches S1, S2, the voltage dropped across the half bridge midpoint being denoted UHBM. A trapezoidal capacitor Ct is connected in parallel with the lower half bridge branch. A lamp choke LR is connected between the first half bridge midpoint HBM and a first output connection A1 of the electronic ballast. Between the first output connection A1 and a second output connection A2, which here constitutes a second half bridge midpoint, an output voltage UR is supplied to a load RL which in this case includes at least one discharge lamp. A coupling capacitor CC is connected between the second output connection A2 and the reference potential, represented by the connection E2. A resonant capacitor CR is connected in parallel with the series circuit of the load RL and the coupling capacitor CC.
The respective waveforms are subdivided into four different phases. In phase 1, the switch S2 is ON (closed), i.e. conducting. As a result, the potential at the half bridge midpoint is at the potential of the DC link voltage UZw. The switch S1 is OFF (open) during this time. The current through the shunt resistor RS is likewise zero. Consequently, in phase 1 the current flows via the switch S2 and the choke LR to the load RL.
The transition to phase 2 is characterized in that the switch S2 goes to the OFF state, while the switch S1, however, is not yet turned on (closed). The current that continues to be driven by the choke LR consequently flows out of the trapezoidal capacitor CT through the choke LR to the load RL. The potential at the half bridge midpoint is reduced linearly to zero. The start of phase 2 corresponds to the start of the dead time tdead.
The transition from phase 2 to phase 3 is characterized in that the trapezoidal capacitor is discharged. The freewheeling diode D1 becomes conducting and clamps the voltage at the half bridge midpoint to approximately −0.7 V. The current now flows via the freewheeling diode D1 and the choke LR to the load RL. With respect to curve family d), a negative current IS consequently flows from the time at which the freewheeling diode D1 has become conducting. If this current reaches a threshold IThres, this is used as per the prior art to initiate the turn-on process (closing operation) of the switch S1. The turn-on process of the switch S1 represents the start of phase 4. The time between the start of phase 2 and the end of phase 3 constitutes the dead time tdead. Phase 3 denotes the time interval within which the switch S1 can be soft-switched. The voltage UHBM dropped across the switch S1 is equal to zero within this period.
In phase 4, the current now begins to flow through the switch S1, which means that the flow of current in phase 4, see curve family d), is approximately sinusoidal until switch S1 is turned off (opened).
The apostrophized waveforms occur when the load RL is increased, i.e. with respect to
When the switch S1 is turned on, see curve S1′, a needle-shaped current I′S now appears, caused by the discharging of the trapezoidal capacitor Ct. Since at this instant U′HBM is no longer zero, the switch S1 is not soft-switched.
Whereas curve family d) and e), as mentioned, were plotted at a first operating frequency fR=fR2 for the switches of the half bridge, a second operating frequency fR>fR2 is now selected for curve family f). The increase in the frequency fR causes the negative current pulse to rise at the instant at which the potential at the half bridge midpoint goes to zero, compare curve family f) with curve family e). The threshold IThres is again reached, allowing soft turn-on of the switch S1.
If this is the case, in step 140 the frequency fR at which the switches of the half bridge are operated is increased. Step 120 is then repeated. As a result of the measure in step 140, the resonant frequency is again shifted further into the inductive region, see
However, if it is established in step 120 that the dead time tdead is less than the predefined time ttimeout, it is checked in step 160 whether the current operating frequency fR is greater than a nominal operating frequency fnom. The nominal operating frequency fnom represents a minimum operating frequency of the electronic ballast. If it is found that the operating frequency fR is above the nominal operating frequency fnom, in step 180 the operating frequency fR is reduced, leading back to Start.
However, if it is established in step 160 that the nominal operating frequency fnom has been reached, this leads back to Start without the current operating frequency fR being changed.
The execution of steps 160, 180 is particularly important if a lamp was initially operated at a higher lamp voltage across the electronic ballast, which has then fallen due to thermal effects, for example. Without adjustment to the nominal operating frequency fnom, the lamp would in this case be operated permanently at elevated frequency and therefore at reduced power. Thus the control relationship shown in
The respective reaching of the predefinable time ttimeout can be particularly easily detected digitally. Depending on implementation, the half bridge frequency can be increased digitally, e.g. by digital PWM registers for the turn-on times of the switching elements, or in an analog manner by an offset at the input of a VCO or CCO.
However, the sequence shown in
As will be obvious to the person skilled in the art, the trapezoidal capacitor Ct and the coupling capacitor CC can also be disposed elsewhere. Moreover, a plurality of trapezoidal capacitors and coupling capacitors can also be provided, as will again be obvious to the person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
102009043611.1 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/061769 | 8/12/2010 | WO | 00 | 3/26/2012 |