A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Not Applicable
Not Applicable
The present invention relates generally to electronic ballasts used to operate gas discharge lamps. More particularly, this invention pertains to circuits and methods used to control the preheating and ignition (“striking”) of a gas discharge lamp by an electronic ballast having a resonant tank output.
Conventional electronic ballasts typically combine a power factor correction (PFC) stage with a high frequency resonant inverter to preheat, strike and drive a fluorescent lamp at different frequencies. The parallel-loaded, series resonant inverter and LCC inverter (which has a smaller value of series-connected capacitors) are both widely used in electronic ballasts.
A conventional analog control circuit for an electronic ballast typically uses resistors to set three different inverter frequencies for preheating the filaments, striking the lamp, and operating the inverter at the normal running frequency. In such control circuits, the values of the resistors and capacitors can also be used to “program” the time duration of the preheat phase. These three inverter frequencies are plotted on
Other operational factors arise when the power flow of the inverter is considered. During normal ballast operation after ignition of the lamp, energy constantly circulates between Cp and Lr. As shown in
R·IL2=R·ILamp2+R·ICp2+2R·|ILamp·ICp|cos(α)
where R can be the resistance of either the inductor or the switches.
In a parallel loaded, series resonant inverter, because of the larger value of Cs, a is close to 90 degrees and the factor 2R·|ILampICp|cos(α) is very small. However, the R·ICp2 factor can still be high with a large value for Cp. For the LCC ballast circuit, ICp increases IL more significantly and with a being smaller, the conduction loss is even higher. In
tan(α)=2τfCs·Rlamp
where f is the normal running frequency and Rlamp is the resistance of the lamp, both the amplitude of ICp and α determine conduction loss. On the other hand, because the flux density of the core of the inductor is proportional to IL, a higher IL increases core losses in addition to the conduction loss.
In the lamp ignition phase, energy flows only into the resonant tank and builds up as current in Lr and voltage across Cp until the lamp starts to ignite. Thus, a high value Cp requires Lr to store more energy, which means either more losses or a larger core size. The peak voltage required to start the lamp is typically high and the components are subjected to the highest stress in this situation. With the load of the lamp removed from the circuit in
where the VAC
With VAC
Obviously, Ipeak decreases with a reduced value of Cp. To avoid hard switching, Lr must not saturate at Ipeak. This requires a larger air gap with higher fringing losses, more winding turns with more conduction losses, and, in some cases, a bigger core with more core losses and higher cost.
Using a low value of Cp with traditional analog control circuits is not practical because of the stray capacitance associated with the connection between the ballast and the fixture and with the fixture itself. In the field, it is very common for the ballast output cable to connect to the lamps in the fixture after passing though 18 feet or more of conduit having a metal wrap. The stray capacitance from the ballast output cable to the conduit and to ground is effectively in parallel with Cp in the circuit, and is represented in
For most common filament heating circuitry as shown in
Several approaches have been used in the prior art to address the problems of maintaining optimum lamp preheat and ignition conditions in microcontroller-based electronic ballasts. In one approach, a large resonant capacitor can be selected such that the affects of the stray capacitance associated with the output cable is small compared to the total resonant capacitance. In another approach, for instant start ballasts, during the start, the resonant inductor saturates. After saturation, the inductance value is very small. The resonant peak thus moves to a very high frequency, much higher than the striking frequency. Because the striking frequency is so far away from the resonant peak, the voltage on the resonant capacitor is no longer sensitive to the variation of the parameters of the resonant capacitor. This allows the ballast to start the lamp with different output cable lengths with essentially the same voltage. There are several obvious disadvantages to this solution. When such a ballast is in the lamp striking phase, it is operating deeply in a capacitive mode with high current and high voltage stresses on the inverter transistors. There can be more than 100 hard switching cycles when no lamp is connected, which is hazardous to the ballast.
In cases where the resonant inductor does not saturate, as seen in most program start ballasts, with a higher value of resonant capacitance and a lower lamp ignition voltage to start the lamp, it is not difficult to start the lamp. However, a higher resonant capacitance establishes a preheat frequency that cannot be much higher than the normal running frequency. As a result, the filament capacitor does not provide much attenuation to the filament current at normal operating frequency when under conditions when the preheat to the filaments is sufficient. The losses on the filaments are relatively high.
In either program start or instant start ballasts, a high value of the resonant capacitor results in high circulation current at steady state, which means higher conduction losses in the transistors and inductor.
What is needed, then, is an electronic ballast having a control circuit that can sense the operating environment of the ballast and adapt the ignition frequency of the inverter to provide optimum preheating and striking of the lamp connected to the ballast.
To improve the ability of electronic ballasts to provide optimum inverter frequencies during lamp preheat and ignition, one object of the present invention is to detect the unloaded frequency response of the inverter resonant tank during or before the preheat and/or strike of the lamp. This information is used by a microcontroller operating the ballast to adapt the inverter frequency during lamp preheat and ignition phases. The microcontroller can select the optimum frequency to strike the lamp with minimum stress on the components, and make it possible to use minimum value of parallel resonant capacitor.
Thus, in one embodiment of the invention, an electronic ballast for operating a gas discharge lamp includes an inverter circuit that is operable at one or more inverter frequencies. The inverter circuit is electrically coupled to a resonant output circuit. An inverter control circuit is operatively connected to the inverter circuit with the control circuit including an inverter frequency program operative to vary the inverter frequency. The inverter control circuit further includes a frequency response program that measures the frequency response of the resonant output circuit. The inverter frequency program is responsive to the frequency response program so as to vary the inverter frequency in accordance with measurement of the frequency response of the resonant circuit. Preferably, the control circuit uses the measurements of the frequency response of the resonant tank to adjust the inverter frequency to provide optimum preheating and ignition of the lamp.
During normal operation, the efficiency of the ballast is improved due to lower circulation current and smaller size of the resonant inductor. This allows the ballast to consistently preheat and strike the lamp with optimum frequency, taking into account variations in the values of the resonant inductor, resonant capacitor, and, in particular, the stray reactance introduced by a long external conduit connecting the ballast to the lamp. Accordingly, the resonant capacitor and magnetic core of the resonant inductor can be designed to be smaller. A smaller resonant capacitor results in a lower circulation current and lower losses in the inverter transistors inductors. This, in turn, allows the preheat frequency to be higher, so that the filament capacitor can be smaller. Consequently, the steady state losses on the lamp filament are reduced, and the pin current limitation of the lamp is easier to satisfy. The ballast is less expensive, runs cooler, performs better, and is easier to design, for instant start, program start, or dimming ballasts.
The microcontroller has been used in the prior art to control certain functions in an electronic ballast, such as lamp detection, re-lamping, and multiple striking. However, prior art use of microcontrollers has not resulted in improvement of inverter performance during the lamp preheat and ignition phases.
In conventional microcontroller-based electronic ballasts, the microcontroller generates the frequency signal for the ballast. For example, in the ballast of
To determine variation in the resonant tank parameters, measurement of the frequency response at one or more frequency points is sufficient. These measurement frequencies can be at the nominal preheat frequency or higher. The measurement takes less than 10 ms using a conventional, low-cost microcontroller and a simple analog filter comprising a network of resistors and capacitors. The sampling is performed at the start of the preheat phase for program start ballasts. Microprocessor controlled instant start ballasts usually start ignition with a brief duration tentative voltage pulse. After a short time the microprocessor checks if current has come through the lamps. If it has, ignition proceeds. If it has not, the attempt is aborted because there must be some fault condition. For instant start ballasts, the sampling can be performed before pinging of the lamp.
In one embodiment of the invention as shown in
The preheat frequency is adjusted at this stage to insure that the preheat voltage across the lamp filament is essentially constant regardless of the length of external cable connected between the ballast and the lamp fixture. A look-up table or software algorithm can be used to determine the preheat frequency.
As shown on
In one embodiment of the invention, a programmed start electronic ballast is controlled by a microcontroller. The striking voltage is preset to 2 kV. A multiple frequency point comparison and match is used to search the optimum frequency for both preheating and striking of the lamp. At the start of preheat phase and by decrease from a higher frequency, this algorithm compares the voltage across Cp with stored preset values until the measured and stored values match. This insures that the lamp filament is always preheated with nearly constant energy to maximized lamp life. At the end of the preheat phase, the tank frequency response is checked again to adapt to the potential change of the Q value due to the change of resistance of the filaments. At this point, the optimum lamp striking frequency is loaded by the software to strike the lamp. With different lengths of conduit and the same parameters of the resonant tank, the striking voltages were recorded and compared as shown in
The present invention compensates for the influence of stray capacitance and for any change in Q value of the resonant tank caused by temperature rise of the filaments or the glow of the lamp. In this way, the resonant capacitor can be selected to be a minimum value. The stray capacitance alters the frequency response of the tank, but the ballast can adapt to the change and adjust the frequency accordingly. The loss, heat, and cost of the ballast can then be reduced with the performance enhanced. The flexibility to use a smaller Cp makes it possible to choose the ratio of the preheat frequency to normal running frequency to be higher than in a conventional design. The ratios of the impedance at preheat frequency and normal running frequency of the filament capacitors, C3, C4 and C5 in
Thus, although there have been described particular embodiments of the present invention of a new and useful. Electronic Ballast with Adaptive Lamp Preheat and Ignition, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
This application is a Non-Provisional Utility application which claims benefit of co-pending U.S. Provisional Patent Application Ser. No. 60/526,639 filed Dec. 3, 2003, entitled “Adaptive Preheat and Strike for Microcontroller Based Ballast” which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60526639 | Dec 2003 | US |