The present invention relates to testing storage batteries. More specifically, the present invention relates to predicting a high-rate load test result for a storage battery by using a dynamic parameter testing technique such as a conductance testing technique.
Storage batteries, such as lead acid storage batteries of the SLI (Starting, lighting and ignition) type used in the automotive industry, have existed for many years. However, understanding the nature of such storage batteries, how such storage batteries operate and how to accurately test such batteries has been an ongoing endeavor and has proved quite difficult.
There has been a long history of attempts to accurately test the condition of storage batteries for starting and other high-rate applications. A standard technique for testing a battery is referred as the Adjustable Load Test. This test is conducted on a charged battery according to the Battery Service Manual of the Battery Council International:
Although the load test provides data that is useful for determining the condition of a battery that has been in service, it has certain drawbacks. First, the load test requires that the battery be sufficiently, and preferably fully, charged in order that it can supply the battery's maximum power to the load. Second, the battery becomes somewhat depleted as a result of the test discharge and therefore leaves it in a less than ideal condition. Third, the standard load test equipment is quite heavy and bulky to handle heavy current loads and as such is not very portable. Fourth, sparks may be produced during the load test. Fifth, the load test takes a finite time to discharge the battery and the equipment must often be cooled between tests to prevent overheating. Sixth, the battery is often at a temperature that departs from ambient testing conditions (70° F.) and as such operators are not always aware of the correct comparison voltage to determine if the battery should be replaced. Typically, operators remember the 70° F. value of 9.6 volts only. Therefore, it is desirable to obtain such load test voltage data by using a more amenable testing technique than the method described above.
More recently, techniques have been pioneered by Dr. Keith S. Champlin and Midtronics, Inc. for testing storage batteries by measuring the conductance and other properties of the batteries. Aspects of these techniques are described in a number of United States patents, for example, U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,416, issued Dec. 10, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997, entitled METHOD FOR OPTIMIZING THE CHARGING LEAD-ACID BATTERIES AND AN INTERACTIVE CHARGER; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000, entitled APPARATUS FOR CHARGING BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000, entitled ELECTRICAL CONNECTION FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELL AND BATTERIES; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,225,808, issued May 1, 2001, entitled TEST COUNTER FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001, entitled ELECTRONIC BATTERY TESTER WITH INTERNAL BATTERY; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX ADMITTANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; entitled METHOD AND APPARATUS FOR MEASURING COMPLEX SELF-IMMITANCE OF A GENERAL ELECTRICAL ELEMENT; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001, entitled APPARATUS FOR CALIBRATING ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001, entitled TESTING PARALLEL STRINGS OF STORAGE BATTERIES; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002, entitled AUTOMOTIVE BATTERY CHARGING SYSTEM TESTER; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002, entitled ALTERNATOR DIAGNOSTIC SYSTEM, U.S. Pat. No. 6,392,414, issued May 21, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002, entitled SUPPRESSING INTERFERENCE IN AC MEASUREMENTS OF CELLS, BATTERIES AND OTHER ELECTRICAL ELEMENTS; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002, entitled APPARATUS AND METHOD FOR TESTING RECHARGEABLE ENERGY STORAGE BATTERIES; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002, entitled VEHICLE ELECTRICAL SYSTEM TESTER WITH ENCODED OUTPUT; U.S. Pat. No. 6,456,045, issued Sep. 24, 2002, entitled INTEGRATED CONDUCTANCE AND LOAD TEST BASED ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002, entitled ALTERNATOR TESTER; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Ser. No. 09/703,270, filed Oct. 31, 2000, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/816,768, filed Mar. 23, 2001, entitled MODULAR BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/960,117, filed Sep. 20, 2001, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 09/908,389, filed Jul. 18, 2001, entitled BATTERY CLAMP WITH INTEGRATED CIRCUIT SENSOR; U.S. Ser. No. 09/908,278, filed Jul. 18, 2001, entitled BATTERY CLAMP WITH EMBEDDED ENVIRONMENT SENSOR; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 09/940,684, filed Aug. 27, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 60/330,441, filed Oct. 17, 2001, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/348,479, filed Oct. 29, 2001, entitled CONCEPT FOR TESTING HIGH POWER VRLA BATTERIES; U.S. Ser. No. 10/046,659, filed Oct. 29, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 09/993,468, filed Nov. 14, 2001, entitled KELVIN CONNECTOR FOR A BATTERY POST; U.S. Ser. No. 09/992,350, filed Nov. 26, 2001, entitled ELECTRONIC BATTERY TESTER, U.S. Ser. No. 60/341,902, filed Dec. 19, 2001, entitled BATTERY TESTER MODULE; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE, U.S. Ser. No. 10/073,378, filed Feb. 8, 2002, entitled METHOD AND APPARATUS USING A CIRCUIT MODEL TO EVALUATE CELL/BATTERY PARAMETERS; U.S. Ser. No. 10/093,853, filed Mar. 7, 2002, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 60/364,656, filed Mar. 14, 2002, entitled ELECTRONIC BATTERY TESTER WITH LOW TEMPERATURE RATING DETERMINATION; U.S. Ser. No. 10/098,741, filed Mar. 14, 2002, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/101,543, filed Mar. 19, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/112,114, filed Mar. 28, 2002; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002; U.S. Ser. No. 10/112,105, filed Mar. 28, 2002, entitled CHARGE CONTROL SYSTEM FOR A VEHICLE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BATTERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/119,297, filed Apr. 9, 2002, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 10/128,790, filed Apr. 22, 2002, entitled METHOD OF DISTRIBUTING JUMP-START BOOSTER PACKS; U.S. Ser. No. 60/379,281, filed May 8, 2002, entitled METHOD FOR DETERMINING BATTERY STATE OF CHARGE; U.S. Ser. No. 10/143,307, filed May 10, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/387,046, filed Jun. 7, 2002, entitled METHOD AND APPARATUS FOR INCREASING THE LIFE OF A STORAGE BATTERY; U.S. Ser. No. 10/177,635, filed Jun. 21, 2002, entitled BATTERY CHARGER WITH BOOSTER PACK; U.S. Ser. No. 10/207,495, filed Jul. 29, 2002, entitled KELVIN CLAMP FOR ELECTRICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 10/200,041, filed Jul. 19, 2002, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 10/217,913, filed Aug. 13, 2002, entitled, BATTERY TEST MODULE; U.S. Ser. No. 60/408,542, filed Sep. 5, 2002, entitled BATTERY TEST OUTPUTS ADJUSTED BASED UPON TEMPERATURE; U.S. Ser. No. 10/246,439, filed Sep. 18, 2002, entitled BATTERY TESTER UPGRADE USING SOFTWARE KEY; U.S. Ser. No. 60/415,399, filed Oct. 2, 2002, entitled QUERY BASED ELECTRONIC BATTERY TESTER; and U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/415,796, filed Oct. 3, 2002, entitled QUERY BASED ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/271,342, filed Oct. 15, 2002, entitled IN VEHICLE BATTERY MONITOR; U.S. Ser. No. 10/270,777, filed Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Ser. No. 10/310,515, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 10/310,490, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 10/310,385 entitled ELECTRONIC BATTERY TESTER, U.S. Ser. No. 60/437,255, filed Dec. 31, 2002, entitled REMAINING TIME PREDICTIONS, U.S. Ser. No. 60/437,224, filed Dec. 31, 2002, entitled DISCHARGE VOLTAGE PREDICTIONS, U.S. Ser. No. 60/437,611, entitled REMAINING TIME PREDICTIONS, which are incorporated herein in their entirety.
In general, battery testers, which determine the condition of the battery as a function of measured dynamic conductance of the battery, carry out the conductance measurement by injecting or drawing a small AC current (less than about 2 amperes) through the battery and measuring the resulting AC voltage. Since this technique only involves the use of a small AC current to determine conductance, it is easy to perform, does not discharge the battery, is relatively rapid and is free from sparking.
The present invention is directed to the use of a dynamic battery parameter, coupled with battery voltage, temperature and Cold Cranking Performance rating (CCA), to determine how a battery would perform under an actual load test. A method and apparatus for testing a storage battery is provided in which a battery is measured to obtain a battery dynamic parameter value such as conductance. The battery is measured to obtain a stable open circuit voltage and a battery temperature value. The load test voltage of the battery is estimated as a function of the battery dynamic parameter value, the open circuit voltage value, the battery temperature value and the battery CCA rating. This voltage value is compared to the minimum requirements for the battery listed above and an output indicative of a condition of the battery is provided.
The present invention provides a method and apparatus for predicting how a battery would perform under a load test by employing a dynamic parameter testing technique. Although the example embodiments of the present invention described below relate to estimating load test values from battery conductance measurements, dynamic parameters other than battery conductance may be utilized without departing from the spirit and scope of the invention. Examples of other dynamic parameters include dynamic resistance, admittance, impedance, reactance, susceptance or their combinations.
In preferred embodiments, circuitry 16 operates, with the exceptions and additions as discussed below, in accordance with battery testing methods described in one or more of the United States patents obtained by Dr. Champlin and Midtronics, Inc. and listed above. Circuitry 16 operates in accordance with one embodiment of the present invention and determines the conductance (G) of battery 12 and the open circuit voltage (OCV) between terminals 22 and 24 of battery 12. Circuitry 16 includes current source 50, differential amplifier 52, analog-to-digital converter 54 and microprocessor 56. Amplifier 52 is capacitively coupled to battery 12 through capacitors C1 and C2. Amplifier 52 has an output connected to an input of analog-to-digital converter 54. Microprocessor 56 is connected to system clock 58, memory 60, memory 62 and analog-to-digital converter 54. Microprocessor 56 is also capable of receiving an input from input devices 66 and 68. Microprocessor 56 also connects to output device 72.
In operation, current source 50 is controlled by microprocessor 56 and provides a current I in the direction shown by the arrow in
Circuitry 16 is connected to battery 12 through a four-point connection technique known as a Kelvin connection. This Kelvin connection allows current I to be injected into battery 12 through a first pair of terminals while the voltage V across the terminals 22 and 24 is measured by a second pair of connections. Because very little current flows through amplifier 52, the voltage drop across the inputs to amplifier 52 is substantially identical to the voltage drop across terminals 22 and 24 of battery 12. The output of differential amplifier 52 is converted to a digital format and is provided to microprocessor 56. Microprocessor 56 operates at a frequency determined by system clock 58 and in accordance with programming instructions stored in memory 60.
Microprocessor 56 determines the conductance of battery 12 by applying a current pulse I using current source 50. The microprocessor determines the change in battery voltage due to the current pulse I using amplifier 52 and analog-to-digital converter 54. The value of current I generated by current source 50 is known and is stored in memory 60. Microprocessor 56 calculates the conductance of battery 12 using the following equation:
where ΔI is the change in current flowing through battery 12 due to current source 50 and ΔV is the change in battery voltage due to applied current ΔI. In some embodiments circuitry 16 also includes a temperature sensor 74, coupled to microprocessor 56, that can be thermally coupled to battery 12 to thereby measure a temperature of battery 12 and provide the measured battery temperature value(s) to microprocessor 56. In the preferred embodiment, the battery temperature would be measured using an infrared signal from the outside of the battery. In other embodiments, instead of being measured, the temperature of battery 12 may be estimated or input by a tester user through input 66, for example. Microprocessor 56 can also use other information input from input device 66 provided by, for example, an operator. This information may consist of the particular type of battery, location, time, the name of the operator, the CCA rating of the battery, the rated load test voltage of the battery, etc.
Under the control of microprocessor 56, battery tester 16 estimates a load test voltage of battery 12 as a function of the battery conductance G, the OCV, the battery temperature and the CCA rating of battery 12. Further, battery tester 16 compares the estimated load test voltage with the rated load test voltage of battery 12 and outputs the state of health of battery 12 based on this comparison. Details regarding the derivation of an algorithm utilized by battery tester 16 to estimate the load test voltage of battery 12 are provided below. The algorithm included below was derived by taking a representative sample of batteries of different sizes and ages and testing them for their conductance and reactions to various loads at various temperatures.
It was found that battery conductance varied with temperature in a substantially predictable curvilinear manner. At cold temperatures it would drop rapidly, while at high temperatures it was higher and more constant. This occurs primarily as a result of the variation of the resistance of the electrolyte with temperature. It was found that the specific conductance could be fitted to a third order polynomial equation with temperature. Using the given temperature of the battery, the conductance at any other temperature can then be predicted by multiplying and dividing by the appropriate temperature factors obtained from this temperature curve.
With fully charged batteries of a given conductance, it is found that the instantaneous loaded voltage is dependent on a voltage that is less than the OCV of the battery. This activation voltage is temperature dependent and can be linearly related:
V=Vact−I*R
or
V=Vact−I/G (Equation 2)
where V is an instantaneous voltage, Vact is the temperature related fully charged activation voltage, I is the discharge current, R is the battery resistance and G is the battery conductance.
Because batteries are not always at full charge and at a standard temperature (temperature defined in a battery test standard), properties of the battery in a fully charged condition at a standard temperature need be estimated. It was found that using the initial voltage or OCV as a measure of the discharge of the battery and also using the temperature of the battery, the conductance could be compensated for by a mathematical relationship to predict that of a fully charged battery under standard conditions. For example, conductance can be expressed as:
Gcomp=G*f1(T,OCV) Equation 3
G70=Gcomp*f2(70)/f2(T) Equation 4
where Gcomp is conductance compensated to full charge at the OCV and temperature of the battery, G70 is conductance at full charge and 70° F., f1(T,OCV) is a function to compensate the conductance at a given temperature and voltage, and f2(T) is a function of the specific conductance at a given temperature.
Since the conductance can be corrected mathematically to full charge, the need to recharge moderately discharged batteries before testing or warming or cooling the battery to test conditions is eliminated.
Thus, knowing the temperature and the conductance (compensated mathematically to full charge) the initial voltage under load can be estimated. Vact is easily calculated for various temperatures by measuring the conductance or the resistance of the fully charged battery and then running the discharge for a short time (2 seconds, for example). Using Equation 2, Vact can be calculated by adding the I*R (or I/G) value to the initial voltage where I is half the CCA rating. By comparing many temperatures and battery types, it is found that Vact varies approximately linearly with temperature and therefore can be predicted using temperature alone.
Vact=k1*T+k2 Equation 5
where T is the battery temperature and k1 and k2 are constants.
Thus the instantaneous load test value at a standard test temperature (70° F.) can be predicted using the combined equations:
Vinit70=70*k1+k2−(CCA/2)/G(70) Equation 6
Where Vinit70=the initial or instantaneous voltage predicted at full charge and 70° F. and G(70) is the projected conductance at full charge and 70° F.
As mentioned above, the load test must sustain its load for a period of time (15 seconds). For good batteries, the initial voltage (2-second voltage) and the 15-second voltage are not substantially different. However, as a battery approaches the end of life, its voltage can decay markedly during the discharge, thus causing a failure even though the initial voltage may be above the minimum specification level. This decay between the initial voltage and the 15-second voltage can be linearly related to the initial battery voltage at standard temperature for most batteries. Thus the decay voltage (DV) can be estimated by using the following relationship:
DV=k3*Vinit70−k4 Equation 7
where Vinit70 is the initial or instantaneous load test voltage at 70° F. and k3 and k4 are constants.
Combining the above Equations, the load test voltage (LTV) at a standard test temperature of 70° F. can be estimated as:
LTV70=Vinit70−DV
or
LTV70=k4+LTV70*(1−k3) Equation 8
This value can then be compared to the rated load test voltage for the battery at the standard test temperature and a judgment on the state of health of the battery can be easily rendered. The rated load test voltage of 9.6 Volts at 70° F. for 12V batteries is used as a comparison. It can also be appreciated that the load test voltage at any other temperature of the battery can similarly be predicted.
In embodiments of the present invention, battery tester 16 is configured to issue a warning that the battery should be recharged before a judgment on the state of health of the battery can be rendered, if it determines that the battery is in an over discharged condition. Also, battery faults such as shorts can be determined by suitably combining the voltage and conductance information using known techniques.
Thus, a rapid test can be performed using the parameters of conductance, OCV, temperature and the CCA rating of the battery to provide data that the industry has accepted for batteries in service.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As mentioned above, although the example embodiments of the present invention described above relate to estimating load test values from battery conductance measurements, dynamic parameters other than battery conductance may be utilized without departing from the spirit and scope of the invention. Examples of other dynamic parameters include dynamic resistances, admittance, impedance, reactance, susceptance or their combinations. In general, a dynamic parameter of the battery can be obtained measuring a response of the battery to any suitable active or passive source.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/408,542, filed Sep. 5, 2002, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2514745 | Dalzell | Jul 1950 | A |
3356936 | Smith | Dec 1967 | A |
3562634 | Latner | Feb 1971 | A |
3593099 | Scholl | Jul 1971 | A |
3607673 | Seyl | Sep 1971 | A |
3676770 | Sharaf et al. | Jul 1972 | A |
3729989 | Little | May 1973 | A |
3753094 | Furuishi et al. | Aug 1973 | A |
3808522 | Sharaf | Apr 1974 | A |
3811089 | Strezelewicz | May 1974 | A |
3873911 | Champlin | Mar 1975 | A |
3876931 | Godshalk | Apr 1975 | A |
3886443 | Miyakawa et al. | May 1975 | A |
3889248 | Ritter | Jun 1975 | A |
3906329 | Bader | Sep 1975 | A |
3909708 | Champlin | Sep 1975 | A |
3936744 | Perlmutter | Feb 1976 | A |
3946299 | Christianson et al. | Mar 1976 | A |
3947757 | Grube et al. | Mar 1976 | A |
3969667 | McWilliams | Jul 1976 | A |
3979664 | Harris | Sep 1976 | A |
3984762 | Dowgiallo, Jr. | Oct 1976 | A |
3984768 | Staples | Oct 1976 | A |
3989544 | Santo | Nov 1976 | A |
4008619 | Alcaide et al. | Feb 1977 | A |
4024953 | Nailor, III | May 1977 | A |
4047091 | Hutchines et al. | Sep 1977 | A |
4053824 | Dupuis et al. | Oct 1977 | A |
4070624 | Taylor | Jan 1978 | A |
4086531 | Bernier | Apr 1978 | A |
4112351 | Back et al. | Sep 1978 | A |
4114083 | Benham et al. | Sep 1978 | A |
4126874 | Suzuki et al. | Nov 1978 | A |
4178546 | Hulls et al. | Dec 1979 | A |
4193025 | Frailing et al. | Mar 1980 | A |
4207611 | Gordon | Jun 1980 | A |
4217645 | Barry et al. | Aug 1980 | A |
4297639 | Branham | Oct 1981 | A |
4315204 | Sievers et al. | Feb 1982 | A |
4316185 | Watrous et al. | Feb 1982 | A |
4322685 | Frailing et al. | Mar 1982 | A |
4351405 | Fields et al. | Sep 1982 | A |
4361809 | Bil et al. | Nov 1982 | A |
4363407 | Barkler et al. | Dec 1982 | A |
4369407 | Korbell | Jan 1983 | A |
4379989 | Kurz et al. | Apr 1983 | A |
4379990 | Sievers et al. | Apr 1983 | A |
4385269 | Aspinwall et al. | May 1983 | A |
4390828 | Converse et al. | Jun 1983 | A |
4392101 | Saar et al. | Jul 1983 | A |
4396880 | Windebank | Aug 1983 | A |
4408157 | Beaubien | Oct 1983 | A |
4412169 | Dell'Orto | Oct 1983 | A |
4423378 | Marino et al. | Dec 1983 | A |
4423379 | Jacobs et al. | Dec 1983 | A |
4424491 | Bobbett et al. | Jan 1984 | A |
4459548 | Lentz et al. | Jul 1984 | A |
4514694 | Finger | Apr 1985 | A |
4520353 | McAuliffe | May 1985 | A |
4564798 | Young | Jan 1986 | A |
4633418 | Bishop | Dec 1986 | A |
4659977 | Kissel et al. | Apr 1987 | A |
4663580 | Wortman | May 1987 | A |
4665370 | Holland | May 1987 | A |
4667143 | Cooper et al. | May 1987 | A |
4667279 | Maier | May 1987 | A |
4678998 | Muramatsu | Jul 1987 | A |
4679000 | Clark | Jul 1987 | A |
4680528 | Mikami et al. | Jul 1987 | A |
4686442 | Radomski | Aug 1987 | A |
4697134 | Burkum et al. | Sep 1987 | A |
4707795 | Alber et al. | Nov 1987 | A |
4709202 | Koenck et al. | Nov 1987 | A |
4710861 | Kanner | Dec 1987 | A |
4719428 | Liebermann | Jan 1988 | A |
4743855 | Randin et al. | May 1988 | A |
4745349 | Palanisamy et al. | May 1988 | A |
4816768 | Champlin | Mar 1989 | A |
4820966 | Fridman | Apr 1989 | A |
4825170 | Champlin | Apr 1989 | A |
4847547 | Eng, Jr. et al. | Jul 1989 | A |
4849700 | Morioka et al. | Jul 1989 | A |
4876495 | Palanisamy et al. | Oct 1989 | A |
4881038 | Champlin | Nov 1989 | A |
4888716 | Ueno | Dec 1989 | A |
4912416 | Champlin | Mar 1990 | A |
4913116 | Katogi et al. | Apr 1990 | A |
4929931 | McCuen | May 1990 | A |
4931738 | MacIntyre et al. | Jun 1990 | A |
4937528 | Palanisamy | Jun 1990 | A |
4947124 | Hauser | Aug 1990 | A |
4956597 | Heavey et al. | Sep 1990 | A |
4968941 | Rogers | Nov 1990 | A |
4968942 | Palanisamy | Nov 1990 | A |
5004979 | Marino et al. | Apr 1991 | A |
5032825 | Xuznicki | Jul 1991 | A |
5037778 | Stark et al. | Aug 1991 | A |
5047722 | Wurst et al. | Sep 1991 | A |
5087881 | Peacock | Feb 1992 | A |
5095223 | Thomas | Mar 1992 | A |
5126675 | Yang | Jun 1992 | A |
5140269 | Champlin | Aug 1992 | A |
5144218 | Bosscha | Sep 1992 | A |
5144248 | Alexandres et al. | Sep 1992 | A |
5160881 | Schramm et al. | Nov 1992 | A |
5170124 | Blair et al. | Dec 1992 | A |
5179335 | Nor | Jan 1993 | A |
5194799 | Tomantschger | Mar 1993 | A |
5204611 | Nor et al. | Apr 1993 | A |
5214370 | Harm et al. | May 1993 | A |
5214385 | Gabriel et al. | May 1993 | A |
5241275 | Fang | Aug 1993 | A |
5254952 | Salley et al. | Oct 1993 | A |
5266880 | Newland | Nov 1993 | A |
5281919 | Palanisamy | Jan 1994 | A |
5281920 | Wurst | Jan 1994 | A |
5295078 | Stich et al. | Mar 1994 | A |
5298797 | Redl | Mar 1994 | A |
5300874 | Shimamoto et al. | Apr 1994 | A |
5302902 | Groehl | Apr 1994 | A |
5315287 | Sol | May 1994 | A |
5321626 | Palladino | Jun 1994 | A |
5331268 | Patino et al. | Jul 1994 | A |
5336993 | Thomas et al. | Aug 1994 | A |
5338515 | Dalla Betta et al. | Aug 1994 | A |
5339018 | Brokaw | Aug 1994 | A |
5343380 | Champlin | Aug 1994 | A |
5347163 | Yoshimura | Sep 1994 | A |
5352968 | Reni et al. | Oct 1994 | A |
5365160 | Leppo et al. | Nov 1994 | A |
5365453 | Startup et al. | Nov 1994 | A |
5381096 | Hirzel | Jan 1995 | A |
5412323 | Kato et al. | May 1995 | A |
5426371 | Salley et al. | Jun 1995 | A |
5426416 | Jefferies et al. | Jun 1995 | A |
5432426 | Yoshida | Jul 1995 | A |
5434495 | Toko | Jul 1995 | A |
5435185 | Eagan | Jul 1995 | A |
5442274 | Tamai | Aug 1995 | A |
5445026 | Eagan | Aug 1995 | A |
5449996 | Matsumoto et al. | Sep 1995 | A |
5449997 | Gilmore et al. | Sep 1995 | A |
5451881 | Finger | Sep 1995 | A |
5457377 | Jonsson | Oct 1995 | A |
5469043 | Cherng et al. | Nov 1995 | A |
5485090 | Stephens | Jan 1996 | A |
5488300 | Jamieson | Jan 1996 | A |
5519383 | De La Rosa | May 1996 | A |
5528148 | Rogers | Jun 1996 | A |
5537967 | Tashiro et al. | Jul 1996 | A |
5541489 | Dunstan | Jul 1996 | A |
5546317 | Andrieu | Aug 1996 | A |
5548273 | Nicol et al. | Aug 1996 | A |
5550485 | Falk | Aug 1996 | A |
5561380 | Sway-Tin et al. | Oct 1996 | A |
5562501 | Kinoshita et al. | Oct 1996 | A |
5563496 | McClure | Oct 1996 | A |
5572136 | Champlin | Nov 1996 | A |
5574355 | McShane et al. | Nov 1996 | A |
5583416 | Klang | Dec 1996 | A |
5585728 | Champlin | Dec 1996 | A |
5589757 | Klang | Dec 1996 | A |
5592093 | Klingbiel | Jan 1997 | A |
5596260 | Moravec et al. | Jan 1997 | A |
5598098 | Champlin | Jan 1997 | A |
5602462 | Stich et al. | Feb 1997 | A |
5606242 | Hull et al. | Feb 1997 | A |
5621298 | Harvey | Apr 1997 | A |
5633985 | Severson et al. | May 1997 | A |
5637978 | Kellett et al. | Jun 1997 | A |
5642031 | Brotto | Jun 1997 | A |
5650937 | Bounaga | Jul 1997 | A |
5652501 | McClure et al. | Jul 1997 | A |
5653659 | Kunibe et al. | Aug 1997 | A |
5656920 | Cherng et al. | Aug 1997 | A |
5675234 | Greene | Oct 1997 | A |
5677077 | Faulk | Oct 1997 | A |
5699050 | Kanazawa | Dec 1997 | A |
5701089 | Perkins | Dec 1997 | A |
5705929 | Caravello et al. | Jan 1998 | A |
5710503 | Sideris et al. | Jan 1998 | A |
5711648 | Hammerslag | Jan 1998 | A |
5717336 | Basell et al. | Feb 1998 | A |
5717937 | Fritz | Feb 1998 | A |
5739667 | Matsuda et al. | Apr 1998 | A |
5747909 | Syverson et al. | May 1998 | A |
5754417 | Nicollini | May 1998 | A |
5757192 | McShane et al. | May 1998 | A |
5760587 | Harvey | Jun 1998 | A |
5773978 | Becker | Jun 1998 | A |
5789899 | van Phuoc et al. | Aug 1998 | A |
5793359 | Ushikubo | Aug 1998 | A |
5796239 | van Phuoc et al. | Aug 1998 | A |
5808469 | Kopera | Sep 1998 | A |
5818234 | McKinnon | Oct 1998 | A |
5821756 | McShane et al. | Oct 1998 | A |
5821757 | Alvarez et al. | Oct 1998 | A |
5825174 | Parker | Oct 1998 | A |
5831435 | Troy | Nov 1998 | A |
5862515 | Kobayashi et al. | Jan 1999 | A |
5872443 | Williamson | Feb 1999 | A |
5895440 | Proctor et al. | Apr 1999 | A |
5914605 | Bertness | Jun 1999 | A |
5927938 | Hammerslag | Jul 1999 | A |
5929609 | Joy et al. | Jul 1999 | A |
5939855 | Proctor et al. | Aug 1999 | A |
5939861 | Joko et al. | Aug 1999 | A |
5945829 | Bertness | Aug 1999 | A |
5951229 | Hammerslag | Sep 1999 | A |
5961561 | Wakefield, II | Oct 1999 | A |
5961604 | Anderson et al. | Oct 1999 | A |
5969625 | Russo | Oct 1999 | A |
6002238 | Champlin | Dec 1999 | A |
6008652 | Theofanopoulos et al. | Dec 1999 | A |
6009369 | Boisvert et al. | Dec 1999 | A |
6031354 | Wiley et al. | Feb 2000 | A |
6037751 | Klang | Mar 2000 | A |
6037777 | Champlin | Mar 2000 | A |
6051976 | Bertness | Apr 2000 | A |
6061638 | Joyce | May 2000 | A |
6072299 | Kurie et al. | Jun 2000 | A |
6072300 | Tsuji | Jun 2000 | A |
6081098 | Bertness et al. | Jun 2000 | A |
6091245 | Bertness | Jul 2000 | A |
6094033 | Ding et al. | Jul 2000 | A |
6104167 | Bertness et al. | Aug 2000 | A |
6114834 | Parise | Sep 2000 | A |
6137269 | Champlin | Oct 2000 | A |
6140797 | Dunn | Oct 2000 | A |
6144185 | Dougherty et al. | Nov 2000 | A |
6150793 | Lesesky et al. | Nov 2000 | A |
6161640 | Yamaguchi | Dec 2000 | A |
6163156 | Bertness | Dec 2000 | A |
6167349 | Alvarez | Dec 2000 | A |
6172483 | Champlin | Jan 2001 | B1 |
6172505 | Bertness | Jan 2001 | B1 |
6181545 | Amatucci et al. | Jan 2001 | B1 |
6222369 | Champlin | Apr 2001 | B1 |
6225808 | Varghese et al. | May 2001 | B1 |
6236332 | Conkright et al. | May 2001 | B1 |
6249124 | Bertness | Jun 2001 | B1 |
6250973 | Lowery et al. | Jun 2001 | B1 |
6254438 | Gaunt | Jul 2001 | B1 |
6259254 | Klang | Jul 2001 | B1 |
6262563 | Champlin | Jul 2001 | B1 |
6263268 | Nathanson | Jul 2001 | B1 |
6294896 | Champlin | Sep 2001 | B1 |
6294897 | Champlin | Sep 2001 | B1 |
6304087 | Bertness | Oct 2001 | B1 |
6307349 | Koenck et al. | Oct 2001 | B1 |
6310481 | Bertness | Oct 2001 | B2 |
6313607 | Champlin | Nov 2001 | B1 |
6313608 | Varghese et al. | Nov 2001 | B1 |
6316914 | Bertness | Nov 2001 | B1 |
6323650 | Bertness et al. | Nov 2001 | B1 |
6329793 | Bertness et al. | Dec 2001 | B1 |
6331762 | Bertness | Dec 2001 | B1 |
6332113 | Bertness | Dec 2001 | B1 |
6346795 | Haraguchi et al. | Feb 2002 | B2 |
6347958 | Tsai | Feb 2002 | B1 |
6351102 | Troy | Feb 2002 | B1 |
6359441 | Bertness | Mar 2002 | B1 |
6359442 | Henningson et al. | Mar 2002 | B1 |
6363303 | Bertness | Mar 2002 | B1 |
6384608 | Namaky | May 2002 | B1 |
6388448 | Cervas | May 2002 | B1 |
6392414 | Bertness | May 2002 | B2 |
6411098 | Laletin | Jun 2002 | B1 |
6417669 | Champlin | Jul 2002 | B1 |
6424157 | Gollomp et al. | Jul 2002 | B1 |
6424158 | Klang | Jul 2002 | B2 |
6441585 | Bertness | Aug 2002 | B1 |
6445158 | Bertness et al. | Sep 2002 | B1 |
6456045 | Troy et al. | Sep 2002 | B1 |
6466025 | Klang | Oct 2002 | B1 |
6466026 | Champlin | Oct 2002 | B1 |
6495990 | Champlin | Dec 2002 | B2 |
6534992 | Meissner et al. | Mar 2003 | B2 |
6534993 | Bertness | Mar 2003 | B2 |
6544078 | Palmisano et al. | Apr 2003 | B2 |
6556019 | Bertness | Apr 2003 | B2 |
6566883 | Vonderhaar et al. | May 2003 | B1 |
6586941 | Bertness et al. | Jul 2003 | B2 |
6597150 | Bertness et al. | Jul 2003 | B1 |
20020171428 | Bertness | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
29 26 716 | Jan 1981 | DE |
0 022 450 | Jan 1981 | EP |
0 637 754 | Feb 1995 | EP |
0 772 056 | May 1997 | EP |
2 749 397 | Dec 1997 | FR |
2 088 159 | Jun 1982 | GB |
59-17892 | Jan 1984 | JP |
59-17893 | Jan 1984 | JP |
59-17894 | Jan 1984 | JP |
59017894 | Jan 1984 | JP |
59215674 | Dec 1984 | JP |
60225078 | Nov 1985 | JP |
62-180284 | Aug 1987 | JP |
63027776 | Feb 1988 | JP |
03274479 | Dec 1991 | JP |
03282276 | Dec 1991 | JP |
4-8636 | Jan 1992 | JP |
04131779 | May 1992 | JP |
04372536 | Dec 1992 | JP |
5216550 | Aug 1993 | JP |
7-128414 | May 1995 | JP |
09061505 | Mar 1997 | JP |
10056744 | Feb 1998 | JP |
2089015 | Aug 1997 | RU |
WO 9322666 | Nov 1993 | WO |
WO 9405069 | Mar 1994 | WO |
WO 9804910 | Feb 1998 | WO |
WO 9858270 | Dec 1998 | WO |
WO 9923738 | May 1999 | WO |
WO 0062049 | Oct 2000 | WO |
WO 0067359 | Nov 2000 | WO |
WO 0151947 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040046566 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60408542 | Sep 2002 | US |