Electronic battery tester

Information

  • Patent Grant
  • 8754653
  • Patent Number
    8,754,653
  • Date Filed
    Tuesday, July 7, 2009
    15 years ago
  • Date Issued
    Tuesday, June 17, 2014
    10 years ago
Abstract
An electronic battery tester for testing a storage battery includes test circuitry configured to provide an output based upon a selected test criteria. Additionally, circuitry is provided to assist in balancing batteries used in a string of multiple batteries.
Description
BACKGROUND OF THE INVENTION

The present invention relates to storage batteries. More specifically, the present invention relates to a battery system tester for testing storage batteries.


Many attempts have been made to test storage batteries. One technique which has been pioneered by Dr. Keith S. Champlin and Midtronics, Inc. of Burr Ridge, Ill. relates to measuring the conductance of batteries to determine their condition. This technique is described in a number of United States patents, for example, U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; and U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY.


With the advent of accurate battery testing, it has become apparent that in some instances the battery testing technique may not be appropriate for the particular purpose of the battery or configuration of multiple batteries.


SUMMARY OF THE INVENTION

An electronic battery tester for testing a storage battery, includes a dynamic measurement circuit configured to measure at least one dynamic parameter of the battery. A memory is configured to store a plurality of test criteria and an input is configured to receive input data related to a selected test criteria. A test circuit provides an output related to battery condition as a function of the dynamic parameter an the selected test criteria. In another aspect, a memory is configured to store a first dynamic parameter from the measurement circuitry related to a first battery of a battery pack. Balance circuitry provides an in-balance output if a second battery in the pack has a dynamic parameter which is substantially equal to the first dynamic parameter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram of a battery tester in accordance with the present invention.



FIG. 2 is a simplified diagram illustrating a tester in accordance with the present invention.



FIG. 3 is a simplified diagram illustrating a tester in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 is a simplified block diagram of a battery tester 10 in accordance with one embodiment of the present invention coupled to a vehicle 12. Vehicle 12 includes a battery 14 having positive and negative terminals, an alternator with internal regulator 16, various vehicle loads 18, and a starter motor 20. In operation, battery 14 provides power to starter 20 and vehicle loads 18 when the engine in vehicle 12 is not running. When the engine in vehicle 12 is running, alternator 16 is used to power vehicle loads 18 and provide a charging current to battery 14 to maintain the charge of battery 14.


Charging system tester 10 includes a microprocessor 30 which controls operation of tester 10 and provides instructions and test result information to an operator through, for example, a display 32. Tester 10 includes a battery testing section 34 which is illustrated generally as conductance amplifier 36. Section 34 operates in accordance with, for example, the conductance based battery testing techniques described in Champlin U.S. Pat. No. 3,873,911, issued Mar. 25, 1975; to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE. Section 34 is illustrated in very simplified form and conductance amplifier 36 provides an output to an analog to digital converter 38 which is related to the internal conductance of battery 14.


A DC voltage sensor 40 includes voltage scaling resistors 42 and 44 and is coupled to battery 14 to provide an output to analog to digital converter 38 which is representative of the DC voltage across battery 14. Further, an AC ripple detector amplifier 46 is coupled to battery 14 through capacitors 48 and 50 and provides an output to analog to digital converter 38 which is representative of the AC ripple voltage across battery 14.


Microprocessor 30 controls analog to digital converter 38 to select which of the three inputs to digitize. Microprocessor 30 includes firmware, memory, and a software program in accordance with the invention. The user input 54 is coupled to microprocessor 30 to provide the information to microprocessor 30 from an operator.


Preferably, tester 10 is portable such that it may be easily moved between vehicles or otherwise transported. Portability of tester 10 is achieved because tester 10 does not require large internal carbon pile loads to load the battery charging system. Instead, as described herein, tester 10 utilizes loads internal to the vehicle 12 in testing the charging system. Further, the battery tester performed by tester 10 is in accordance with the non-load battery testing technique as described above.


In another aspect of the present invention, microprocessor 30 includes a memory which is capable of storing a number of different decision making algorithms or test criteria. The particular test criteria or algorithm can be selected through user input 54. For example, in one aspect, the test criteria is selected based upon the particular type of battery or rated reserve capacity of the battery. For example, if a battery is rated as having a particularly robust design with a large reserve capacity, the test criteria can be made more stringent such that an indication that the battery is “good” is only provided if the battery meets the higher test criteria.



FIG. 2 is a simplified block diagram of tester 10 in accordance with such an embodiment. In FIG. 2, tester 10 includes dynamic parameter measurement circuitry 80 which couples to battery 14 through Kelvin connections 82. Dynamic parameter measurement circuitry 80 can be any circuit configuration which measures a dynamic parameter of battery 14. As used herein, a dynamic parameter is one which is related to a signal having an AC component. The signal can be either applied directly or drawn from battery 14. Example dynamic parameters include dynamic resistance, conductance, impedance, admittance, etc. This list is not exhaustive, for example, a dynamic parameter can include a component value of an equivalent circuit of battery 14. Memory 84 is configured to store a plurality of different test criteria. For example, the test criteria can be a number of different thresholds or errors which are used to provide an indication as to whether the battery 14 is “good.” Input 54, which can comprise a user input, is coupled to test circuitry 86. Test circuitry 86 applies a selected test criteria for memory 84 based upon user input 54 to the dynamic parameter measured by dynamic parameter measurement circuitry 80. Based upon this comparison, an output is provided. FIG. 2 is a very simplified block diagram and in actual practice a number of the individual elements can be implemented in a single microprocessor and other circuit configurations. Input 64 can be any type of input and is not limited to a user input.


In this aspect of the invention, the criteria used to test battery 14 can be adjusted based upon a particular aspect of battery 14. For example, if battery 14 is a new battery, a more stringent test can be applied to battery 14. Additionally, if battery 14 is intended to be used in an industrial vehicle or other situation which is very demanding of a battery, a more “difficult” or stringent test criteria can be provided. The test criteria can be based upon other factors to the dynamic parameter such as temperature or “static” parameters. The input from input 54 can be any type of input data and does not need to be user generated. Example input data includes every make, model, type, construction date, present date, temperature, vehicle type, VIN code, battery service requirements, requirements for a particular application, etc.


Tester 10 can test a battery which is formed by more than one individual battery. This is called a “battery pack”. For example, some vehicles such as large industrial vehicles include multiple batteries which are connected in series, parallel or series-parallel. In such an embodiment, element 14 in FIGS. 1 and 2 can represent such a pack such batteries can be particularly difficult to test and, in many prior art battery testers, have required the batteries to be disconnected and individually tested. In accordance with one aspect of the present invention, microprocessor 30 tests the multiple batteries using a variety of appropriate techniques. Microprocessor 30 is capable of determining the configuration of the batteries (parallel, series or series-parallel) by measuring the voltage at the terminals of the “battery pack” and through receiving user input through input 54 indicating the number of batteries in the pack. Additionally, in some instances microprocessor 30 may also need to receive information related to the voltage of the individual batteries in the pack in order to make a determination as to the configuration of the pack. There are some instances where the configuration of the pack cannot be determined by simply knowing the voltage of individual batteries and taking measurements. A series of standard known configurations can be stored in the memory in tester 10 tester, and a user can select one such configuration. Configurations of battery packs include up to 12 batteries in parallel, three batteries in series and 12 batteries in series-parallel configurations. Microprocessor 30 is capable of determining the CCA rating and/or conductance of the entire battery pack using the information it has determined regarding the configuration of the battery pack. For example, in parallel configurations the CCA measurement is additive as is conductance, while in series-parallel or series configurations the voltage can be additive but the CCA/conductance can remain the same.


In one aspect, tester 10 is capable of detecting a good battery, a discharged battery, a bad cell, a bad battery, a marginal and/or defective wiring within a battery pack without disconnecting the pack. In one such embodiment, multiple test connections are used to connect to the battery pack. For example, one pair of connections can be used to connect to either end of the battery pack while another connection can be used to connect to points within the battery pack or to measure current flowing between points within the battery pack. Using this technique, the various currents flowing within the battery pack can be determined and this information can be used to detect a bad connection, such as a bad cable or poor physical connection between two points within the battery pack. Additionally, microprocessor 30 can instruct the user using display 32 to make various measurements at various points along the battery pack to more fully determine the condition of various portions of the battery pack.


In some instances, the microprocessor 30 can instruct the user to disconnect a certain battery within the battery pack in order to perform an isolated test on that battery.


In another aspect, microprocessor 30 uses advanced testing criteria or testing techniques such as fuzzy logic, neural networks or other artificial intelligence techniques to detect and make decisions regarding the health of a battery or a battery pack. Such techniques can also be used in evaluating time varying signals such as signals generated by the operation of alternator 16 or starter 20 in vehicle 12.


In another aspect, tester 10 includes a load such that a traditional load test can be performed on the battery 14. Such a load test is known in the art and is performed by applying a load to a battery and observing the effect of the applied load to the voltage or current flowing from the battery. In such an embodiment, such information can be used in conjunction with a resistance, impedance, conductance or admittance test of the battery 14 to identify a defect in the battery or otherwise determine the condition of the battery. This technique can also be used to measure the remaining or reserve capacity of the battery or battery pack. Such a testing technique provides additional information to microprocessor 30 which can then be used to make more advanced decisions regarding battery condition.


Microprocessor 30 can also compute, store, display or print out equivalent rating information regarding equivalent ratings of battery 14. Such equivalent ratings include CCA, SAE, DIN, IEC, EN, CA, MCA, JIS or others of the battery. In such an embodiment, microprocessor 30 can adjust for variations in the measured conductance of a battery pack due to cables between batteries in the pack or the connectors between the cables and the battery which can insert series resistances into the measurement. The adjustment can be based upon compensation data stored in a memory which is determined empirically by measuring different types of batteries or through other techniques. Particular compensation information can be determined through determining the configuration of batteries within a battery pack as described above. The compensation information can in the form of a multiplier which is used to multiply a conductance measurement.


In another aspect, measurements of battery conductance are used to “balance” the various batteries in a battery pack such that they are selected and arranged for delivering optimized current and/or receiving optimized charge current. This aspect is illustrated in FIG. 3. For example, if a 600 CCA battery is placed in series with a 500 CCA battery, one of the batteries will tend to become overcharged while the other battery will tend to be undercharged. Tester 10 can alert an operator regarding the unbalanced condition of the batteries within the pack. Tester 10 can prompt a user to disconnect certain batteries within the pack and perform individual tests on the batteries to determine which battery is unbalanced from the others. This will also assist in selecting the batteries used in the battery pack.



FIG. 3 illustrates a simplified diagram of this aspect of tester 10 and includes a dynamic parameter measurement circuit 80 coupled to battery 14 through connection 90. Battery 14 is illustrated as multiple batteries, in this case three separate batteries 14A, 14B and 14C. These batteries can be connected in series, parallel or series parallel. Connection 90 can be a single pair of Kelvin connectors which are selectively positioned between or on various batteries in pack 14. There can be more than two Kelvin connections which are coupled to pack 14. Memory 94 stores a first dynamic parameter from dynamic parameter measurement circuit 80 related to a dynamic parameter of at least one battery 14A, 14B or 14C within battery pack 14. Balance circuit 92 provides an in-balance output if a second dynamic parameter of a second battery or batteries within pack 14 is “substantially equal” to the dynamic parameter stored in memory 94. As used in this context, the term “substantially equal” means that the two dynamic parameters are within a predetermined or adjustable percentage or fixed amount from one another. If the two dynamic parameters are measured simultaneously, memory 94 is not required to store a dynamic parameter. In a further embodiment of this a aspect of the invention, a static parameter such as voltage is used in determining if the batteries are within balance. For example, the two batteries are within 0.1 volts of each other (i.e., 12.5 and 12.6 volts) and the conductance within 10%, an in-balance indication is provided. In another example, less than a 0.05 volt difference is required in addition to the dynamic parameter requirement. Additionally, data from multiple batteries can be stored in memory 94 and a preferred configuration of the batteries can be provided by balance circuitry 92 on its output. Information regarding the configuration of battery pack 14 can be received through the input 54 shown in FIGS. 1 and 2 and the output from balance circuit 92 adjusted accordingly.


The condition of cables or connectors can be determined by applying a large load, such as through an internal load in battery tester 10 or through application of a vehicle load 18, or through the application of a large resistance, for example more than about 0.1 ohms. An amp clamp measurement can also be used. Further, microprocessor 30 can prompt a user to measure voltage drops across various cables in the pack and make a decision (i.e., good/bad) regarding a cable or connection in the battery pack. Microprocessor 30 can store, display, print and manage multiple test results associated with the multiple test measurements made when measuring a number of batteries which make a battery pack. This can be partial measurement, parameter, or other items related to individual batteries within the pack.


In one aspect, battery tester 10 is configured to determine the CCA rating of a battery or battery pack having a relatively large CCA value, for example, up to 5000 CCA. In such an embodiment, sensitive amplifiers and/or relatively large current values can be used to obtain the CCA or conductance measurement. In another aspect, tester 10 can perform a test on vehicle 12 by instructing an operator to apply a load (i.e., head lights, blower, etc.) or a combination of loads and reserve the response from battery 14. This information can be used to determine diagnostic information regarding battery 14 out of the operation of components within vehicle 12.


With one aspect of the invention, the tester can be used to test the “straps” that are used to couple individual batteries together to form a battery pack. For example, a dynamic parameter can be measured with the Kelvin probes applied directly to the battery. A second dynamic parameter can be measured in which one of the straps separates a Kelvin probe from the battery. A microprocessor can then compute the dynamic parameter of the strap alone and provide an output if the strap is poor. For example, if the strap dynamic conductance is too low, a warning can be provided. This technique can be extended to test multiple straps. In addition to testing straps within the pack, this technique can also be used to test cables that connect to the battery. Dynamic parameters can be stored in the memory for use in subsequent computations, or multiple Kelvin probes can be used to simultaneously measure multiple dynamic parameters.


In some aspects, a separate current probe can be used, such as a shunt, amp clamp or Hall effect sensor, to measure the current flowing into or out of a battery or group of batteries under test. This data can be paired with voltage measurements to obtain static or dynamic parameters.


The tester can store measurements in memory such that the battery pack can be ranked in terms of performance.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. An electronic battery tester for use in testing a battery pack formed by a plurality of storage batteries, comprising: dynamic parameter measurement circuitry configured to measure dynamic parameters of batteries, wherein the dynamic parameters are related to an applied signal; a memory containing programming instructions; an output configured to provide instructions to an operator; and a microprocessor configured to operate in accordance with instructions stored in the memory and perform a battery test on a battery of the battery pack, the memory containing instructions which are performed by the microprocessor to thereby provide a message on the output which contains instructions to the operator to disconnect the battery from other batteries in the battery pack to thereby isolate the battery from other batteries in the battery pack, the microprocessor further configured to perform a battery test on the isolated battery, further including an electrical load, wherein the battery test is further a function of a load test.
  • 2. An electronic battery tester for use in testing a battery pack formed by a plurality of storage batteries, comprising: dynamic measurement circuitry configured to measure a dynamic parameter of the battery pack, wherein the dynamic parameter is related to an applied signal; and a microprocessor which compensates the measured dynamic parameter of the battery pack based upon errors introduced into the dynamic parameter measurement of batteries in the battery pack due to cables which extend between batteries of the battery pack and electrically connect the batteries in the battery pack, and includes a memory configured to store compensation data for use in compensatory measurement errors.
  • 3. The apparatus of claim 2 wherein the compensation is based on configuration of batteries in the battery pack.
  • 4. The apparatus of claim 2 wherein the compensation comprises multiplier.
  • 5. The apparatus of claim 2 wherein the dynamic parameter comprises conductance.
  • 6. The apparatus of claim 3 wherein the compensation data is stored in a look-up table.
  • 7. An electronic battery tester for use in testing a battery pack formed by a plurality of storage batteries, comprising: dynamic parameter measurement circuitry configured to measure a dynamic parameter of the battery pack and a dynamic parameter of a strap of the battery pack, wherein the dynamic parameter is related to an applied signal; and a microprocessor which determines battery condition based upon the measured dynamic parameter of the battery and the dynamic parameter of the strap of the battery pack and responsively provides an output indicative of a condition of the single strap, and includes a memory configured to store the measured dynamic parameter of the strap.
  • 8. The apparatus of claim 7 wherein the microprocessor determines condition of the strap based upon the dynamic parameter of the strap.
  • 9. The apparatus of claim 7 wherein the dynamic parameter of the strap comprises dynamic conductance.
Parent Case Info

The present invention is a Divisional of U.S. application Ser. No. 10/441,271, filed May 19, 2003, which is a Divisional of U.S. application Ser. No. 09/703,270, filed Oct. 31, 2000, now U.S. Pat. No. 6,566,883, which claims priority to Provisional Application Ser. No. 60/163,013, filed Nov. 1, 1999 and entitled AUTOMOTIVE BATTERY CHARGING SYSTEM TESTER.

US Referenced Citations (734)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2417940 Lehman Mar 1947 A
2437772 Wall Mar 1948 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3178686 Mills Apr 1965 A
3223969 Alexander Dec 1965 A
3267452 Wolf Aug 1966 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3699433 Smith, Jr. Oct 1972 A
3729989 Little May 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
3808522 Sharaf Apr 1974 A
3811089 Strezelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3857082 Van Opijnen Dec 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3920284 Lane et al. Nov 1975 A
3936744 Perlmutter Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207610 Gordon Jun 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4280457 Bloxham Jul 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Sep 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
D299909 Casey Feb 1989 S
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4847547 Eng, Jr. et al. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koench Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
D330338 Wang Oct 1992 S
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5187382 Kondo Feb 1993 A
5194799 Tomantschger Mar 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5241275 Fang Aug 1993 A
5254952 Salley et al. Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5347163 Yoshimura Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5387871 Tsai Feb 1995 A
5394093 Cervas Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5631536 Tseng May 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5644212 Takahashi Jul 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5869951 Takahashi Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5953322 Kimball Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5963012 Garcia et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037749 Parsonage Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6121880 Scott et al. Sep 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6202739 Pal et al. Mar 2001 B1
6211651 Nemoto Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6262692 Babb Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320351 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6448778 Rankin Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6505507 Imao et al. Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531648 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781344 Hedegor et al. Aug 2004 B1
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856162 Greatorex et al. Feb 2005 B1
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6983212 Burns Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 VonderHaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7042346 Paulsen May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7170393 Martin Jan 2007 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7202636 Reynolds et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al. May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Mellchar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7501795 Bertness et al. Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7590476 Shumate Sep 2009 B2
7592776 Tsukamoto et al. Sep 2009 B2
7595643 Klang Sep 2009 B2
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7667437 Johnson et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7684908 Ogilvie et al. Mar 2010 B1
7688074 Cox et al. Mar 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728556 Yano et al. Jun 2010 B2
7728597 Bertness Jun 2010 B2
7751953 Namaky Jul 2010 B2
7772850 Bertness Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7848857 Nasr et al. Dec 2010 B2
7883002 Jin et al. Feb 2011 B2
7902990 Delmonico et al. Mar 2011 B2
7924015 Bertness Apr 2011 B2
7940053 Brown et al. May 2011 B2
7999505 Bertness Aug 2011 B2
8164343 Bertness Apr 2012 B2
20010035737 Nakanishi et al. Nov 2001 A1
20020004694 McLeod Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li Feb 2002 A1
20020030495 Kechmire Mar 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020050163 Makhija et al. May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020121901 Hoffman Sep 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20030006779 Youval Jan 2003 A1
20030009270 Breed Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030124417 Bertness et al. Jul 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040000913 Raichle et al. Jan 2004 A1
20040000915 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040051534 Kobayashi et al. Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040164706 Osborne Aug 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040207367 Taniguchi et al. Oct 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness et al. Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050076381 Gross Apr 2005 A1
20050102073 Ingram May 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050162172 Bertness Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060030980 St. Denis Feb 2006 A1
20060089767 Sowa Apr 2006 A1
20060095230 Grier et al. May 2006 A1
20060161313 Rogers et al. Jul 2006 A1
20060161390 Namaky et al. Jul 2006 A1
20060217914 Bertness Sep 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070046261 Porebski Mar 2007 A1
20070159177 Bertness et al. Jul 2007 A1
20070194791 Huang Aug 2007 A1
20070194793 Bertness Aug 2007 A1
20070259256 Le Canut et al. Nov 2007 A1
20080036421 Seo et al. Feb 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080094068 Scott Apr 2008 A1
20080169818 Lesesky et al. Jul 2008 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20090006476 Andreasen et al. Jan 2009 A1
20090146800 Grimlund et al. Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20090276115 Chen Nov 2009 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
Foreign Referenced Citations (61)
Number Date Country
29 26 716 Jan 1981 DE
196 38 324 Sep 1996 DE
10 2008 036 5 Feb 2010 DE
0 022 450 Jan 1981 EP
0 476 405 Sep 1991 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0 902 521 Mar 1999 EP
0 982 159 Mar 2000 EP
1 810 869 Nov 2004 EP
1 807 710 Jul 2007 EP
2 749 397 Dec 1997 FR
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 275 783 Jul 1994 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9628846 Sep 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
WO 9821132 May 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
Non-Patent Literature Citations (118)
Entry
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining the End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394-397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128,131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
National Semiconductor Corporation, “High Q Notch Filter”, Mar. 1969, Linear Brief 5.
Burr-Brown Corporation, “Design a 60 Hz Notch Filter with the UAF42”, Jan. 1994, AB-071, 1994.
National Semiconductor Corporation, “LMF90-4th-Order Elliptic Notch Filter”, Dec. 1994, RRD-B30M115.
“Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.com, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexp.com/t—dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InforWeb.design—center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
Notification of Transmittal of the International Search Report or the Declaration, PCT/US02/29461.
Notification of Transmittal of the International Search Report or the Declaration, PCT/US03/07546.
Notification of Transmittal of the International Search Report or the Declaration, PCT/US03/06577.
Notification of Transmittal of the International Search Report or the Declaration, PCT/US03/07837.
“Improved Impedance Spectroscopy Technique for Status Determination of Production Li/SO2 Batteries” Terrill Atwater et al., pp. 10-113, (1992).
Notification of Transmittal of the International Search Report or the Declaration, PCT/US03/41561.
Notification of Transmittal of the International Search Report or the Declaration, PCT/US03/27696.
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois, pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Notification of Transmittal of the International Search Report for PCT/US03/30707.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
Search Report Under Section 17 for Great Britain Application No. GB0421447.4.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
Examination Report from the UK Patent Office for App. No. 0417678.0; Jan. 24, 2005.
Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
Office Action from U.S. Appl. No. 11/352,945; dated Jan. 5, 2007.
Office Action from U.S. Appl. No. 11/146,608 dated May 13, 2008.
Office Action from U.S. Appl. No. 11/063,247 dated Apr. 11, 2008.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2008/008702 filed Jul. 2008; 15 pages.
Notification Concerning Availability of the Publication of the International Application for PCT/US2008/008702, filed Jul. 17, 2008; 24 pages.
First Notice Informing the Applicant of the Communication of the International Application (to Designated Offices which do not apply the 30 Month Time Limit Under Article 22(1)) for PCT/US2008/008702 filed Jul. 17, 2008; one page.
Notification of the Recording of a Change for PCT/US2008/008702 filed Jul. 17, 2008; one page.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I-Conductance/Capacity Correlation Studies”, by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications”, by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.).
“Condutance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II-Further Conductance/Capacity Correlation Studies”, by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.).
“Field Experience of Testing VRLA Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™/DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et la., Mar. 2000, 6 pgs; (10 total pgs.).
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.
Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages.
Communication from GB1216105.5, dated Sep. 21, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Patent No. 7,089,127.
“Field Evaluation of Honda's EV PLUS Battery Packs”, by A. Paryani, IEEE AES Systems Magazine, Nov. 2000, pp. 21-24.
Search Report from PCT/US2011/047354, dated Nov. 11, 2011.
Written Opinion from PCT/US2011/047354, dated Nov. 11, 2011.
Office Action from U.S. Appl. No. 13/048,365, dated Oct. 3, 2013.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Feb. 12, 2007.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Dec. 6, 2007.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Jun. 16, 2008.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Oct. 29, 2008.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Sep. 1, 2006.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Feb. 16, 2006.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Oct. 5, 2005.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Aug. 30, 2004.
USPTO Office Action from related U.S. Appl. No. 10/441,271, mail date Apr. 22, 2004.
USPTO Office Action from related U.S. Appl. No. 09/703,270, mail date Jan. 30, 2002.
Office Action for corresponding U.S. Appl. No. 12/698,375, dated Jun. 23, 2010, 9 pages.
Office Action for corresponding U.S. Appl. No. 12/498,642, dated Mar. 4, 2010, 8 pages.
Office Action for corresponding U.S. Appl. No. 12/498,642, dated Jun. 9, 2010, 10 pages.
Office Action for corresponding U.S. Appl. No. 12/498,642, dated Sep. 29, 2010, 11 pages.
Office Action for corresponding U.S. Appl. No. 12/498,642, dated Mar. 21, 2011, 10 pages.
Office Action for corresponding U.S. Appl. No. 12/498,642, dated Aug. 18, 2011, 11 pages.
Office Action for corresponding U.S. Appl. No. 10/896,834, dated Oct. 18, 2007, 5 pages.
Office Action for corresponding U.S. Appl. No. 10/896,834, dated Apr. 18, 2008, 4 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Dec. 21, 2006, 18 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jul. 27, 2007, 17 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Dec. 17, 2007, 15 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jun. 23, 2008, 18 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Sep. 30, 2008, 16 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Apr. 2, 2009, 16 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jul. 9, 2009, 15 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jan. 20, 2010, 16 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jun. 8, 2010, 16 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Oct. 13, 2010, 13 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Mar. 1, 2011, 13 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Jun. 22, 2011, 13 pages.
Office Action for corresponding U.S. Appl. No. 10/791,141, dated Oct. 5, 2011, 13 pages.
Office Action for corresponding U.S. Appl. No. 10/098,741, dated Sep. 17, 2003, 6 pages.
Office Action for corresponding U.S. Appl. No. 10/098,741, dated Jan. 14, 2004, 7 pages.
Office Action for corresponding U.S. Appl. No. 10/098,741, dated Jun. 3, 2004, 6 pages.
Office Action for corresponding U.S. Appl. No. 10/046,659, dated Jun. 18, 2003, 9 pages.
Office Action for corresponding U.S. Appl. No. 09/703,270, dated Jan. 30, 2002, 7 pages.
Office Action for corresponding U.S. Appl. No. 09/564,740, dated Mar. 28, 2001, 8 pages.
Office Action for corresponding U.S. Appl. No. 09/293,020, dated Dec. 20, 2000, 11 pages.
Office Action for corresponding U.S. Appl. No. 08/681,730, dated Oct. 24, 2007, 4 pages.
Office Action for corresponding U.S. Appl. No. 08/681,730, dated Apr. 24, 1997, 6 pages.
Office Action for corresponding U.S. Appl. No. 08/681,730, dated May 11, 1998, 4 pages.
Search Report and Written Opinion from PCT Application No. PCT/US2011/038279, dated Sep. 16, 2011, 12 pgs.
Related Publications (1)
Number Date Country
20100013489 A1 Jan 2010 US
Provisional Applications (1)
Number Date Country
60163013 Nov 1999 US
Divisions (2)
Number Date Country
Parent 10441271 May 2003 US
Child 12498642 US
Parent 09703270 Oct 2000 US
Child 10441271 US