FIELD OF THE INVENTION
The present invention relates to an electronic cigarette, and more particularly to an electronic cigarette with a fluid transportation device.
BACKGROUND OF THE INVENTION
Nowadays, electronic cigarettes are widely used to replace the conventional tobacco cigarettes. FIG. 1A is a schematic cross-sectional view illustrating a conventional electronic cigarette. FIG. 1B is a schematic cross-sectional view illustrating the structure of an atomizer of the conventional electronic cigarette. As shown in FIGS. 1A and 1B, the electronic cigarette comprises a first casing 1a, a second casing 1b, a power supply device 2, a sensing unit 3, an atomizer 4 and a liquid storage structure 5. The first casing 1a and the second casing 1b are thin-wall metal pipes, e.g., stainless steel pipes. The power supply device 2, the sensing unit 3, the atomizer 4 and the liquid storage structure 5 are disposed within the first casing 1a and the second casing 1b. After the first casing 1a and the second casing 1b are combined together, the electronic cigarette is assembled. The length and diameter of the electronic cigarette are similar to those of the conventional tobacco cigarette. The power supply device 2 and the sensing unit 3 are disposed within the first casing 1a. The first casing 1a comprises at least one entrance 1c near the sensing unit 3. The atomizer 4 and the liquid storage structure 5 are disposed within the second casing 1b. The atomizer 4 is fixed and supported on a bracket 7. The atomizer 4 comprises an electric heater 41, a liquid conduit 44 and a liquid transfer part 43. The liquid conduit 44 is arranged around the electric heater 41. The liquid transfer part 43 is tightly contacted with the liquid conduit 44. The electric heater 41 has a hollow structure. The liquid storage structure 5 comprises a passageway 51 and a liquid container 52. The passageway 51 is formed within the liquid storage structure 5 for allowing the gas to pass through. The liquid container 52 is arranged around the passageway 51. The liquid transfer part 43 is arranged around the liquid conduit 44 and a communication part 431 of the liquid transfer part 43 is contacted with the liquid container 52. Consequently, a cigarette liquid in the liquid container 52 could be absorbed to or infiltrate to the liquid conduit 44 through the communication part 431 of the liquid transfer part 43. Moreover, an intake-and-electric-connection element 10 is disposed between the atomizer 4 and the sensing unit 3 to define an airflow path. The airflow path is in communication with the passageway 51 of the liquid storage structure 5. After the ambient airflow is fed into the at least one entrance 1c, the airflow is transferred to the passageway 51 of the liquid storage structure 5 through the sensing unit 3 and the electric heater 41. The electronic cigarette further comprises an electrode ring 8. The electrode ring 8 is electrically connected with two pins of the electric heater 41. Moreover, the electrode ring 8 is electrically connected with the power supply device 2 through the electric connection between the intake-and-electric-connection element 10 and the sensing unit 3. An electric circuit of the power supply device 2 is selectively enabled or disabled according to the result of sensing the airflow by the sensing unit 3. Moreover, a mouthpiece 9 is disposed on an end of the second casing 1b and in communication with the passageway 51 of the liquid storage structure 5.
The operations of the electronic cigarette will be described as follows. As mentioned above, the cigarette liquid in the liquid container 52 can be absorbed to or infiltrate to the liquid conduit 44 through the communication part 431 of the liquid transfer part 43. When the user smokes and inhales the air through the mouthpiece 9, the airflow flows through the electronic cigarette. According to the sensing result of the sensing unit 3, the electric circuit of the power supply device 2 is enabled. After the electric circuit of the power supply device 2 is enabled, the power supply device 2 provides electric power to the electrode ring 8. Consequently, the electric heater 41 is enabled to heat the cigarette liquid. Meanwhile, the cigarette liquid in the liquid conduit 44 is heated and atomized by the electric heater 41. Consequently, the user inhales the atomized vapor from the passageway 51 of the liquid storage structure 5 through the mouthpiece 9. When the user stops smoking, the airflow does not flow through the electronic cigarette. According to the sensing result of the sensing unit 3, the electric circuit of the power supply device 2 is disabled. Meanwhile, the electric heater 41 stops heating the cigarette liquid.
As mentioned above, the cigarette liquid is transferred to the liquid conduit 44 through the communication part 431 of the liquid transfer part 43. However, this design has some drawbacks. Since it is difficult to precisely control the amount of the cigarette liquid to be transferred to the liquid conduit 44, the cigarette liquid usually fails to be transferred uniformly to the liquid conduit 44. If a part of the liquid conduit 44 receives a lesser amount of the cigarette liquid than the other parts, the liquid droplets are not uniformly generated so that an unpleasing burning taste appears in the atomized vapor.
In addition, since the amount of the cigarette liquid to be transferred to the liquid conduit 44 cannot be precisely controlled, the liquid leakage occurs. Especially when the electronic cigarette stays in an upright position with the mouthpiece 9 on the top, the cigarette liquid continuously moves from the liquid container 52 to the liquid conduit 44 under the force of gravity. Once the liquid conduit 44 reaches a saturation state, the excessive cigarette liquid drops down to the intake-and-electric-connection element 10. Moreover, the cigarette liquid may drop down through the sensing unit 3 and leak out from the at least one entrance 1c, which results in terrible user experience.
Moreover, there are some differences between the electronic cigarettes and the tobacco cigarettes. For example, when people smoke the tobacco cigarettes, they are accustomed to gulp air quickly and shortly. Whereas, people smoke the electronic cigarettes slowly and gently. While the tobacco user smokes and inhales a great amount of oxygen, the user can quickly get the wanted amount of smoke because the tobacco is burnt and atomized faster. However, while the user smokes the conventional electronic cigarette, the electric power transmitted to the electric heater cannot be adjusted. That is the heating speed of the electric heater cannot be adjusted. If the heating speed is too fast, the cigarette liquid is atomized by the atomizer very quickly. Since the cigarette liquid of the conventional electronic cigarette is provided according to a siphon effect, the speed of providing the cigarette liquid is too slow. Under this circumstance, the amount of the atomized vapor is insufficient or the atomizer is burnt out. Since the electric power transmitted to the atomizer of the conventional electronic cigarette is fixed, the user has to smoke the electronic cigarette slowly and gently to provide a sufficient heating time to the atomizer. That is, the conventional method of atomizing the cigarette liquid of the electronic cigarette still has some drawbacks. The above problems lead to significant differences between the tobacco cigarette and the electronic cigarette. Because of these drawbacks, the user does not prefer to choose the electronic cigarette in replace of the tobacco cigarette.
For solving the drawbacks of the conventional technologies, the present invention provides an improved electronic cigarette.
SUMMARY OF THE INVENTION
An object of the present invention provides an electronic cigarette. The cooperation of a fluid transportation device and a liquid conduit of an atomizer forms a controllable switch element. The amount of the cigarette liquid to be transferred to the liquid conduit of the atomizer is precisely controlled by the controllable switch element. Consequently, the taste of the atomized vapor is enhanced, and the liquid leakage problem is solved.
Another object of the present invention provides an electronic cigarette for allowing the user to inhale a great amount of atomized vapor quickly. The electronic cigarette includes an airflow sensor and an air pressure sensor. The air pressure sensor is operable to generate and transmit a detection signal to a control module according to the result of detecting a pressure of the airflow. According to the detection signal, the control module adjusts the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid. That is, the control signal from the control module is adjusted according to the detection signal. Since the driving frequency of the fluid transportation device and the driving power of the heater module are correspondingly changed according to the control signal, the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid are adjusted. Consequently, the user could inhale a great amount of atomized vapor quickly, or the user could inhale the same amount of atomized vapor in each breath.
In accordance with an aspect of the present invention, there is provided an electronic cigarette. The electronic cigarette includes a power supply device, an atomizer, a liquid storage structure, a fluid transportation device, a sensing unit, a casing and a mouthpiece. The power supply device provides a driving power and a control signal. The atomizer includes an electric heater and a liquid conduit. The electric heater is arranged around the liquid conduit. The liquid storage structure includes a liquid container. A cigarette liquid is stored in the liquid container. The fluid transportation device includes an input channel and an output channel. The input channel is in communication with the liquid container. The output channel is in communication with the liquid conduit of the atomizer. The cigarette liquid is transferred from the liquid container to the liquid conduit through the fluid transportation device, so that the cigarette liquid is transferred to the electric heater of the atomizer at a certain amount. After the cigarette liquid is heated by the electric heater, an atomized vapor is generated. The sensing unit includes an airflow sensor and an air pressure sensor. An electric circuit of the power supply device is selectively enabled or disabled according to a result of detecting an airflow by the airflow sensor, and the air pressure sensor is operable to generate and transmit a detection signal to a control module according to a result of detecting a pressure of the airflow. According to the detection signal, the control module issues a control signal to change a driving frequency of the fluid transportation device and a driving power of a heater module so as to adjust a speed of atomizing the cigarette liquid and a speed of providing the cigarette liquid. The power supply device, the fluid transportation device, the atomizer, the liquid storage structure and the sensing unit are disposed within the casing, and the casing has an entrance. The entrance is in communication with and between the atomizer and the sensing unit, and an airflow chamber is formed between the atomizer and the sensing unit. After the airflow is fed into the entrance, the airflow passes through the airflow chamber and the sensing unit along an airflow path. The mouthpiece seals an end of the casing and in communication with the airflow path. The mouthpiece has an opening for inhaling the atomized vapor in the airflow path.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a schematic cross-sectional view illustrating the conventional electronic cigarette;
FIG. 1B is a schematic cross-sectional view illustrating the structure of an atomizer of the conventional electronic cigarette;
FIG. 2A is a schematic cross-sectional view illustrating an electronic cigarette according to an embodiment of the present invention;
FIG. 2B is a schematic cross-sectional view illustrating some components near the power supply device of the electronic cigarette according to the embodiment of the present invention;
FIG. 2C is a schematic cross-sectional view illustrating some components near the atomizer of the electronic cigarette according to the embodiment of the present invention;
FIG. 2D is a schematic top view illustrating the structure of an exemplary atomizer of the electronic cigarette according to the embodiment of the present invention;
FIG. 3 is a schematic functional block diagram illustrating the power supply device of the electronic cigarette according to the embodiment of the present invention;
FIG. 4 is a schematic perspective view illustrating the fluid transportation device of the electronic cigarette according to the embodiment of the present invention;
FIG. 5A is a schematic exploded view illustrating the fluid transportation device of FIG. 4 and taken along a front side;
FIG. 5B is a schematic exploded view illustrating the fluid transportation device of FIG. 4 and taken along a rear side;
FIG. 6A is a schematic perspective view illustrating the valve body of the fluid transportation device of FIG. 4 and taken along the front side;
FIG. 6B is a schematic perspective view illustrating the valve body of the fluid transportation device of FIG. 4 and taken along the rear side;
FIG. 7A is a schematic perspective view illustrating the valve chamber seat of the fluid transportation device of FIG. 4 and taken along the front side;
FIG. 7B is a schematic perspective view illustrating the valve chamber seat of the fluid transportation device of FIG. 4 and taken along the rear side;
FIG. 8 is a schematic top view illustrating the valve membrane of the fluid transportation device of FIG. 4;
FIG. 9 is a schematic perspective view illustrating the outer sleeve of the fluid transportation device of FIG. 4;
FIG. 10A is a schematic perspective view illustrating the valve cover of the fluid transportation device of FIG. 4 and taken along the front side;
FIG. 10B is a schematic perspective view illustrating the valve cover of the fluid transportation device of FIG. 4 and taken along the rear side;
FIG. 11 is a schematic cross-sectional view illustrating the assembled structure of the fluid transportation device of FIG. 4;
FIG. 12A is a schematic view illustrating the operations of the fluid transportation device in a first situation; and
FIG. 12B is a schematic view illustrating the operations of the fluid transportation device in a second situation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Please referring to FIGS. 2A, 2B and 2C, the electronic cigarette of the present invention comprises a casing 1, a power supply device 2, a sensing unit 3, an atomizer 4, a liquid storage structure 5, a fluid transportation device 6 and a mouthpiece 9. The casing 1 is a combination of a first casing 1a and a second casing 1b. The second casing 1b is replaceable. The first casing 1a and the second casing 1b are thin-wall metal pipes, e.g., stainless steel pipes. After the first casing 1a and the second casing 1b are combined together, the electronic cigarette is assembled. The length and diameter of the electronic cigarette are similar to those of the conventional tobacco cigarette. The power supply device 2 is disposed within the first casing 1a. An intake-and-electric-connection element 10 is disposed within the first casing 1a and the power supply device 2 is electrically connected with the atomizer 4 and the fluid transportation device 6 through the intake-and-electric-connection element 10. The sensing unit 3, the atomizer 4, the liquid storage structure 5 and the fluid transportation device 6 are disposed within the second casing 1b. The second casing 1b comprises at least one entrance 1c. The sensing unit 3 is disposed at the front of the atomizer 4. There is an airflow chamber 1d between the sensing unit 3 and the atomizer 4. After the ambient airflow is introduced into the airflow chamber 1d through the at least one entrance 1c, the airflow passes through the sensing unit 3 along an airflow path. A connection cable if is disposed within the second casing 1b. The sensing unit 3, the atomizer 4, the liquid storage structure 5 and the fluid transportation device 6, which are disposed within the second casing 1b, are connected with the intake-and-electric-connection element 10 through the connection cable if and further electrically connected with the power supply device 2.
As shown in FIG. 3, the power supply device 2 comprises a power module 21, a control module 22, a heater module 23 and a light emitting diode 24. The power module 21 is a rechargeable battery or a disposable battery for providing a driving power to the control module 22, the heater module 23 and the sensing unit 3. The control module 22 transmits a first control signal to the heater module 23 and a second control signal to the fluid transportation device 6. The control module 22 provides the driving power to the fluid transportation device 6, and the heater module 23 provides electric energy to the atomizer 4 for heating to atomize. The light emitting diode 24 is located at an end of the first casing 1a. Under control of the control module 22, the light emitting diode 24 is turned on or turned off to provide a prompt signal to indicate the operating condition of the electronic cigarette or provide a prompt signal with varied intensity to indicate the intensity of the atomized vapor.
Please refer to FIGS. 2A, 2B and 2C again. The sensing unit 3 includes an airflow sensor 31 and an air pressure sensor 32. The airflow sensor 31 is operable to generate and transmit a detection signal to the control module 22 according to the result of detecting the airflow. Consequently, the electric circuit of the power supply device 2 is selectively enabled or disabled. That is, the driving power and the control signal of the control module 22 and the driving power of the heater module 23 are selectively enabled or disabled. The air pressure sensor 32 is operable to generate and transmit a detection signal to the control module 22 according to the result of detecting the pressure of the airflow. According to the detection signal, the control module 22 adjusts the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid. That is, the control signal from the control module 22 is adjusted according to the detection signal. Since the driving frequency of the fluid transportation device 6 and the driving power of the heater module 23 are correspondingly changed according to the control signal, the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid are adjusted.
Please refer to FIGS. 2A, 2C and 2D. The atomizer 4 is fixed and supported on a bracket 7 and disposed within the airflow chamber 1d. The atomizer 4 comprises an electric heater 41 and a liquid conduit 44. The electric heater 41 has a hollow structure. The two pins (not shown) of the electric heater 41 are electrically connected with the power supply device 2 through the connection cable if and the intake-and-electric-connection element 10. According to the flowing condition of the airflow detected by the sensing unit 3, the electric heater 41 is controlled to start heating or stop heating. The liquid conduit 44 is used for transferring the cigarette liquid. For example, the liquid conduit 44 is a stainless steel tube. The liquid conduit 44 is disposed on the bracket 7. The liquid conduit 44 has an input port 441 at front end thereof and plural perforations 442 at the rear end thereof. The electric heater 41 is disposed on the bracket 7 and arranged around the liquid conduit 44.
Please refer to FIGS. 2A and 2C. The liquid storage structure 5 is disposed within the second casing 1b. The liquid storage structure 5 comprises a liquid container 52. The cigarette liquid is stored in the liquid container 52. Moreover, the liquid container 52 is in communication with an input channel 6a of the fluid transportation device 6. In accordance with a feature of the present invention, the fluid transportation device 6 is used as a switch element for selectively allowing the cigarette liquid of the liquid container 52 to pass through. The fluid transportation device 6 is supported and positioned in the second casing 1b through a supporting seat 1e. An output channel 6b of the fluid transportation device 6 is in communication with the input port 441 of the liquid conduit 44 of the atomizer 4. When the fluid transportation device 6 is enabled, the cigarette liquid is transferred from the liquid container 52 to the liquid conduit 44 through the fluid transportation device 6, and transferred to the outside of the liquid conduit 44 through the perforations 442. Meanwhile, the cigarette liquid in the liquid conduit 44 is heated and atomized by the electric heater 41.
Please refer to FIGS. 4, 5A, 5B, 6A, 6B, 7A and 7B. The fluid transportation device 6 comprises a valve body 63, a valve membrane 64, a valve chamber seat 65, an actuator 66 and an outer sleeve 67. After the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 are sequentially stacked on each other, the combination of the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 is accommodated within the outer sleeve 67 and assembled with the outer sleeve 67.
The valve body 63 and the valve chamber seat 65 are the main components for guiding the cigarette liquid to be inputted into or outputted from of the fluid transportation device 6. The valve body 63 comprises an inlet passage 631 and an outlet passage 632. The inlet passage 631 and the outlet passage 632 run through a first surface 633 and a second surface 634 of the valve body 63. An inlet opening 6311 is formed in the second surface 634 and in communication with the inlet passage 631. Moreover, a groove 6341 is formed in the second surface 634 and arranged around the inlet opening 6311. A protrusion block 6343 is disposed on the periphery of the inlet opening 6311. An outlet opening 6321 is formed in the second surface 634 and in communication with the outlet passage 632. A groove 6342 is arranged around the outlet opening 6321. Moreover, plural recesses 63b are formed in the second surface 634 of the valve body 63.
The valve chamber seat 65 comprises a third surface 655, a fourth surface 656, plural posts 65a, an inlet valve channel 651, an outlet valve channel 652 and a pressure chamber 657. The plural posts 65a are formed on the third surface 655. The posts 65a are aligned with the corresponding recesses 63b of the valve body 63. When the posts 65a are inserted into the corresponding recesses 63b of the valve body 63, the valve body 63 and the valve chamber seat 65 are fixed together. The inlet valve channel 651 and the outlet valve channel 652 run through the third surface 655 and the fourth surface 656. A groove 653 is formed in the third surface 655 and arranged around the inlet valve channel 651. A protrusion block 6521 is disposed on the periphery of the outlet valve channel 652. A groove 654 is formed in the third surface 655 and arranged around the outlet valve channel 652. The pressure chamber 657 is concavely formed in the fourth surface 656, and in communication with the inlet valve channel 651 and the outlet valve channel 652. Moreover, a concave structure 658 is formed in the fourth surface 656 and arranged around the pressure chamber 657.
Please refer to FIGS. 5A, 5B and 8. In an embodiment, the valve membrane 64 is made of polyimide (PI), and the valve membrane 64 is produced by a reactive ion etching (RIE) process, in which a photosensitive photoresist is applied to the valve structure and the pattern of the valve structure is exposed to light, then the polyimide layer uncovered by the photoresist is etched so that the valve structure of the valve membrane 64 is formed. The valve membrane 64 is a flat thin film structure. As shown in FIG. 8, the valve membrane 64 comprises two valve plates 641a and 641b at two perforated regions 64a and 64b, respectively. The two valve plates 641a and 641b have the same thickness. The valve membrane 64 further comprises plural extension parts 642a and 642b. The extension parts 642a and 642b are arranged around the valve plates 641a and 641b for elastically supporting the valve plates 641a and 641b. The valve membrane 64 further comprises plural hollow parts 643a and 643b, each of which is formed between two adjacent extension parts 642a and 642b. When an external force is exerted on any one of the valve plates 641a and 641b, the valve plates 641a and 641b are subjected to a displacement since the valve plates 641a and 641b are elastically supported by the extension parts 642a and 642b. Consequently, a valve structure is formed. Preferably but not exclusively, the valve plates 641a and 641b have circular shapes, rectangular shapes, square shapes or arbitrary shapes. The valve membrane 64 further comprises plural positioning holes 64c. The posts 65a of the valve chamber seat 65 are penetrated through the corresponding positioning holes 64c. Consequently, the valve membrane 64 is positioned on the valve chamber seat 65. Meanwhile, the inlet valve channel 651 and the outlet valve channel 652 are respectively covered by the valve plates 641a and 641b (see FIG. 8). In this embodiment, the valve chamber seat 65 comprises two posts 65a and valve membrane 64 comprises two positioning holes 64c. It is noted that the number of the posts 65a and the number of the positioning holes 64c are not restricted.
Please refer to FIG. 11. When the valve body 63 and the valve chamber seat 65 are combined together, four sealing rings 68a, 68b, 68c and 68d are received in the groove 6341 of the valve body 63, the groove 6342 of the valve body 63, the groove 653 of the valve chamber seat 65 and the groove 654 of the valve chamber seat 65, respectively. Due to the sealing rings 68a, 68b, 68c and 68d, the cigarette liquid is not leaked out after the valve body 63 and the valve chamber seat 65 are combined together. The inlet passage 631 of the valve body 63 is aligned with the inlet valve channel 651 of the valve chamber seat 65. The communication between the inlet passage 631 and the inlet valve channel 651 is selectively enabled or disabled through the valve plate 641a of the valve membrane 64. The outlet passage 632 of the valve body 63 is aligned with the outlet valve channel 652 of the valve chamber seat 65. The communication between the outlet passage 632 and the outlet valve channel 652 is selectively enabled or disabled through the valve plate 641b of the valve membrane 64. When the valve plate 641a of the valve membrane 64 is opened, the cigarette liquid is transferred from the inlet passage 631 to the pressure chamber 657 through the inlet valve channel 651. When the valve plate 641b of the valve membrane 64 is opened, the cigarette liquid is transferred from the pressure chamber 657 to the outlet passage 632 through the outlet valve channel 652. Finally, the cigarette liquid is expelled from the outlet passage 632.
Please refer to FIGS. 5A and 5B again. The actuator 66 comprises a vibration plate 661 and a piezoelectric element 662. The piezoelectric element 662 is attached on a surface of the vibration plate 661. In an embodiment, the vibration plate 661 is made of a metallic material, and the piezoelectric element 662 is made of a highly-piezoelectric material such as lead zirconate titanate (PZT) piezoelectric powder. When a voltage is applied to the piezoelectric element 662, the piezoelectric element 662 is subjected to a deformation. Consequently, the vibration plate 661 is vibrated along the vertical direction in the reciprocating manner to drive the operation of the fluid transportation device 6. In this embodiment, the vibration plate 661 of the actuator 66 is assembled with the fourth surface 656 of the valve chamber seat 65 to cover the pressure chamber 657. As mentioned above, the concave structure 658 is formed in the fourth surface 656 and arranged around the pressure chamber 657. For preventing from the fluid leakage, a sealing ring 68e is received in the concave structure 658.
As mentioned above, the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 are the main components of the fluid transportation device 6 for guiding the cigarette liquid. In accordance with the feature of the present invention, the fluid transportation device 6 has a specified mechanism for assembling and positioning these components. That is, it is not necessary to use the fastening elements (e.g., screws, nuts or bolts) to fasten these components. In an embodiment, the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 are sequentially stacked on each other and accommodated within the outer sleeve 67. Then, a valve cover 62 is tight-fitted into the outer sleeve 67. Consequently, the fluid transportation device 6 is assembled. The mechanism for assembling and positioning these components will be described as follows.
Please refer to FIGS. 5A, 5B and 9. The outer sleeve 67 is made of a metallic material. An accommodation space is defined by an inner wall 671 of the outer sleeve 67. Moreover, a ring-shaped protrusion structure 672 is formed on the lower portion of the inner wall 671 of the outer sleeve 67. Then, please refer to FIGS. 10A and 10B. The valve cover 62 is also made of a metallic material. The valve cover 62 comprises a first opening 621 and a second opening 622. The inlet passage 631 and the outlet passage 632 of the valve body 63 are penetrated through the first opening 621 and the second opening 622, respectively. Moreover, a bottom edge of the valve cover 62 has a chamfer structure 623. The outer diameter of the valve cover 62 is slightly larger than the inner diameter of the inner wall 671 of the outer sleeve 67.
Please refer to FIGS. 5A and 5B again. The valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 are sequentially stacked on each other and placed into the accommodation space within the inner wall 671 of the outer sleeve 67. Meanwhile, the combination of the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 is supported by the ring-shaped protrusion structure 672 of the outer sleeve 67. As mentioned above, the outer diameter of the valve cover 62 is slightly larger than the inner diameter of the inner wall 671 of the outer sleeve 67. Due to the chamfer structure 623, the valve cover 62 is tight-fitted into the outer sleeve 67. Consequently, the combination of the valve body 63, the valve membrane 64, the valve chamber seat 65 and the actuator 66 is securely fixed between the valve cover 62 and the outer sleeve 67. Meanwhile, the fluid transportation device 6 is assembled. In this embodiment, the actuator 66 is also disposed within the accommodation space of the outer sleeve 67. When piezoelectric element 662 is subjected to a deformation in response to the applied voltage, the vibration plate 661 is vibrated along the vertical direction in the reciprocating manner. In other words, it is not necessary to use the fastening elements (e.g., screws, nuts or bolts) to fasten the components of the fluid transportation device 6.
Please refer to FIG. 11 again. The inlet valve channel 651 of the valve chamber seat 65 is aligned with the inlet opening 6311 of the valve body 63, and the inlet valve channel 651 of the valve chamber seat 65 and the inlet opening 6311 of the valve body 63 are selectively in communication with each other through the valve plate 641a of the valve membrane 64. When the inlet opening 6311 of the valve body 63 is closed by the valve plate 641a, the valve plate 641a is in close contact with the protrusion block 6343 of the valve body 63. Consequently, a pre-force is generated to result in a stronger sealing effect, and the cigarette liquid will not be returned back. Similarly, the outlet valve channel 652 of the valve chamber seat 65 is aligned with the outlet opening 6321 of the valve body 63, and the outlet valve channel 652 of the valve chamber seat 65 and the outlet opening 6321 of the valve body 63 are selectively in communication with each other through the valve plate 641b of the valve membrane 64. When the outlet valve channel 652 of the valve chamber seat 65 is closed by the valve plate 641b, the valve plate 641b is in close contact with the protrusion block 6521 of the valve chamber seat 65. Consequently, a pre-force is generated to result in a stronger sealing effect, and the cigarette liquid will not be returned back to the pressure chamber 657. Under this circumstance, in case that the fluid transportation device 6 is disabled, the cigarette liquid is not returned back to the inlet passage 631 and the outlet passage 632 of the valve body 63.
The operations of the fluid transportation device 6 will be described in more details as follows. As shown in FIG. 12A, when the piezoelectric element 662 of the actuator 66 is subjected to a deformation in response to the applied voltage and causes downwardly deformation of the vibration plate 661, the volume of the pressure chamber 657 is expanded to result in suction. In response to the suction, the valve plate 641a of the valve membrane 64 is quickly opened. Consequently, a great amount of the cigarette liquid is inhaled into the inlet passage 631 of the valve body 63, transferred to and temporarily stored in the pressure chamber 657 through the inlet opening 6311 of the valve body 63, the hollow parts 643a of the valve membrane 64 and the inlet valve channel 651 of the valve chamber seat 65. Since the suction is also exerted on the outlet valve channel 652, the valve plate 641b supported by the extension parts 642b of the valve membrane 64 is in close contact with the protrusion block 6521 of the valve chamber seat 65. Consequently, the outlet valve channel 652 of the valve chamber seat 65 is tightly closed by the valve plate 641b.
Then, as shown in FIG. 12B, once the direction of electric field applied to the piezoelectric element 662 is changed, the piezoelectric element 662 drives the vibration plate 661 to deform upwardly, and the volume of the pressure chamber 657 is shrunken. As a result, the cigarette liquid within the pressure chamber 657 is compressed, and a pushing force is generated and applied to the inlet valve channel 651. In response to the pushing force, the valve plate 641a supported by the extension parts 642a of the valve membrane 64 is in close contact with the protrusion block 6343 of the valve body 63. Consequently, the inlet valve channel 651 of the valve chamber seat 65 is closed, and the cigarette liquid cannot be returned back to the inlet valve channel 651. Meanwhile, the pushing force is also applied to the outlet valve channel 652. In response to the pushing force, the valve plate 641b supported by the extension parts 642b of the valve membrane 64 is separated from the protrusion block 6521. Meanwhile, the outlet valve channel 652 of the valve chamber seat 65 is opened, and the cigarette liquid is transferred from the pressure chamber 657 to the external portion of the fluid transportation device 6 through the outlet valve channel 652 of the valve chamber seat 65, the hollow parts 643b of the valve membrane 64, the outlet opening 6321 of the valve body 63 and the outlet passage 632 of the valve body 63, sequentially.
The processes of FIGS. 12A and 12B are repeatedly done. Consequently, the cigarette liquid could be transferred by the fluid transportation device 6 at high efficiency without being returned back.
The inlet passage 631 and the input channel 6a of the fluid transportation device 6 are connected with each other. The fluid transportation device 6 is in communication with the liquid container 52 through the input channel 6a. The outlet passage 632 and the output channel 6b of the fluid transportation device 6 are connected with each other. The output channel 6b of the fluid transportation device 6 is in communication with the liquid conduit 44 of the atomizer 4. When the fluid transportation device 6 is enabled, the cigarette liquid is transferred from the liquid container 52 to the liquid conduit 44 through the fluid transportation device 6 and transferred to the outside of the liquid conduit 44 through the perforations 442. In response to the control signal from the control module 22, the fluid transportation device 6 is enabled. Since the fluid transportation device 6 is used as a switch element, the cigarette liquid is transferred from the liquid container 52 to the liquid conduit 44 through the fluid transportation device 6 at a certain amount. Under the same pressure, the cigarette liquid is uniformly transferred to the outside of the liquid conduit 44 through the perforations 442 to generate uniform droplets. Once the cigarette liquid received by the liquid conduit 44 reaches a saturation state, the fluid transportation device 6 is disabled. In other words, the cooperation of the fluid transportation device 6 and the atomizer 4 forms a controllable switch element in order for precisely controlling the amount of the cigarette liquid to be transferred to the liquid conduit 44 of the atomizer 4. Consequently, the taste of the atomized vapor is enhanced, and the liquid leakage problem is solved
Please refer to FIGS. 2A and 2C. The mouthpiece 9 is located at an end of the second casing 1b. Moreover, the mouthpiece 9 is in communication with the airflow chamber 1d through the sensing unit 3. After the ambient airflow is introduced into the airflow chamber 1d through the at least one entrance 1c, the airflow passes through the sensing unit 3 along the airflow path. The mouthpiece 9 comprises a filter 91 and an opening 92. The filter 91 is located at an end of the sensing unit 3 to block the cigarette liquid which is not completely atomized from entering the opening 92. Consequently, the cigarette liquid cannot be inhaled by the user.
The operations of the electronic cigarette will be described as follows. When the user smokes and inhales the air through the opening 92 of the mouthpiece 9, the airflow flows through the electronic cigarette. At the same time, the electric circuit of the power supply device 2 is enabled. After the electric circuit of the power supply device 2 is enabled, the power supply device 2 provides electric power to the heater module 23. Consequently, the electric heater 41 is enabled to heat the cigarette liquid. Meanwhile, the cigarette liquid in the liquid conduit 44 is heated and atomized by the electric heater 41. The cooperation of the fluid transportation device 6 and the atomizer 4 forms a controllable switch element in order for precisely controlling the amount of the cigarette liquid to be transferred to the liquid conduit 44 of the atomizer 4 and transferred to the outside of the liquid conduit 44 at a certain amount. Consequently, the user inhales the atomized vapor through the opening 92 of the mouthpiece 9. When the user stops smoking, the airflow does not flow through the electronic cigarette. According to the sensing result of the sensing unit 3, the electric circuit of the power supply device 2 is disabled. Meanwhile, the electric heater 41 is disabled.
Moreover, when the user inhales the atomized vapor through the opening 92 of the mouthpiece 9, the air pressure sensor 32 generates and transmits a detection signal to the control module 22 according to the result of detecting the pressure of the airflow. According to the detection signal, the control module 22 adjusts the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid. That is, the control signal from the control module 22 is adjusted according to the detection signal. Since the driving frequency of the fluid transportation device 6 and the driving power of the heater module 23 are correspondingly changed according to the control signal, the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid are adjusted. Consequently, the user can inhale a great amount of atomized vapor quickly, or the user can inhale the same amount of atomized vapor in each breath.
From the above descriptions, the present invention provides the electronic cigarette. The cooperation of the fluid transportation device and the liquid conduit of the atomizer forms the controllable switch element. The amount of the cigarette liquid to be transferred to the liquid conduit of the atomizer is precisely controlled by the controllable switch element. The electronic cigarette includes an airflow sensor and an air pressure sensor. The air pressure sensor generates and transmits a detection signal to the control module according to the result of detecting the pressure of the airflow. According to the detection signal, a control module adjusts the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid. That is, the control signal from the control module is adjusted according to the detection signal. Since the driving frequency of the fluid transportation device and the driving power of the heater module are correspondingly changed according to the control signal, the speed of atomizing the cigarette liquid and the speed of providing the cigarette liquid are adjusted. Consequently, the cigarette liquid could be transferred by the fluid transportation device at high efficiency without being returned back. Since the amount of the cigarette liquid is precisely controlled, the droplets are uniformly generated, the taste of the atomized vapor is enhanced, and the liquid leakage problem is solved. In other words, the electronic cigarette with the fluid transportation device is industrially valuable.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.