Electronic cigarettes are gaining popularity for a variety of reasons. However, with increased popularity, e-cigarette configuration flaws have raised several issues.
One main issue with the assembly process is due to the hand assembly process. This creates a human error factor in the assembly process. Due to the human error factor, the products currently on the market are of inferior quality and possess unacceptable levels of variability.
Below is a list of several of the issues known and identified in the design of electronic cigarettes presently on the market:
These are just to name the basic or most common problems identified with the current products.
The present invention overcomes the problems referenced in the background of invention section by providing a device 10 having a metal frame, 14, and two external plastic panels, a first external plastic panel 12 and a second external plastic panel 24, a removable side cover 26 that is configured to provides an air inlet, a mouthpiece 16, a vapor/pressure/atomizer cavity 40 (which houses two cartridges and vacuum switch), an electronics cavity 39 sealed from the vapor cavity (which houses the main PCBA 36, that includes the microprocessor with PWM circuitry, battery 38, speaker, microphone, secondary PCBA with LED's for battery—the figures do not specifically show the speaker, microphone, secondary PCBA with LED's for battery because they are configured and integral with main PCBA 36), a button mechanism 18 to flip out the mouthpiece. Device 10 has an opening 22 for accessing micro USB 37.
Some of the advantages of the present invention are that it allows for users to mix flavors of nicotine, have increased time between battery recharges, and liquid cartridge changes. Ability to interact with their device either through a GUI/computer or their own voice, and control and change the characteristics of how the device operates. Use of Authentication on the cartridges allows for encryption so that cartridges cannot be duplicated or reused. In one embodiment, the battery component is completely segregated from the vapor stream that is inhaled by the user.
Mouthpiece:
As shown in
When users want to change or insert liquid cartridges 34, they will remove the side door 26. Users will then pull the old liquid cartridges 34 to remove them. Once removed users will insert new cartridges 34 in the correct orientation. The cartridges include a cartridge body, 82, plug, 84, heating element 86, and cap, 88.
The proposed PCB, 36, for the new unit will be a rigid PCB in the bottom of the assembly. The vacuum switch PCBA, 35, turns the unit on when a user inhales. The PCB houses a Micro USB, 37, a vacuum switch, 35, a battery, 38, indication LED's, 20, and a microprocessor. In one embodiment, there are two separate cartomizers, 34, each with their own heater controlled by a PWM microprocessor on the PCBA board, 36, allowing for variable heater intensity and combining of flavors. The connections to the heater and EEPROM go through a custom anode, 94. The battery, 38, connects to the board using a Molex wire-to-board assembly.
Another embodiment of the present invention will allow the user to identify the remaining fluid in their cartridge without having to remove the cartridge or do a visual check. By utilizing a microphone embedded into the center of the vacuum switch PCBA, 35, the unit will be able to sense when there is a puff occurring by listening for the sound of inhalation. When a user puffs on the device, air is drawn into the unit. This air creates a sound based on the configuration of the holes. The microphone is tuned to the frequency of this sound and activates based on it. The microphone will not activate based on any other sound, thereby removing the possibility of a false activation. This alone will be used for heater activation; by obtaining the duration of the puff, users should be able to accurately predict the amount of liquid used in that puff.
Upon inserting a new liquid cartridge into the device and taking the first puff the microphone passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the EEPROM, 92. Once users reach 110% capacity, this allows for 10% in calculations, of the cartomizer the unit no longer will activate the heater until a new liquid cartridge is inserted. As the user depletes the liquid in the cartridge they are notified of the remaining liquid level via the optional microphone on PCBA, 36. This feature allows the user to easily identify when a new liquid cartridge is needed.
Microphone from a technical aspect: Analog Devices—ADMP404 The ADMP404 is a high quality, high performance, low power, and analog output bottom-ported omnidirectional MEMS microphone. The unit includes a MEMS microphone element, an impedance converter, and an output amplifier. The sensitivity specifications make it an excellent choice for near field applications. The unit has a high SNR and flat, wideband frequency response, plus its low current consumption enables long battery life for portable applications. The ADMP404 is halide free.
As used herein, “authentication” refers to the process by which the system is limited to an operating state only when an authenticated cartridge is secured therein. Authentication includes, but is not limited to NVRAM, EPROM, EEPROM, EEPROM with a Serial No., Authentication chip, combinations thereof, and the like.
In one embodiment, the cartridge is constructed and arranged in a manner such that the authentication is disabled and/or destroyed if a user tries to refill the cartridge. In this embodiment, this prevents unauthorized materials being used with the electronic cigarette of the present invention.
NVRAM:
To prevent a third party from creating a replacement cartridge, one preferred embodiment requires the cartridge must have a way to guarantee uniqueness. Having unauthorized cartridges can lead to device failure and revenue loss.
To meet this configuration requirement the Atmel ATSHA204 authentication chip was selected. This chip would provide all of the necessary features to implement the currently understood requirements.
The Atmel ATSHA204 provides:
Other potential options are listed below.
Option 1: EEPROM (Electronically Erasable Programmable Read Only Memory)
A simple EEPROM, 92, will allow the memory to be cleared and overwritten. By allowing the memory to be erased and re-written the user may reset their counters and change the number of uses. Additionally by allowing the memory to be erased and re-written the cartridges may also be refurbished by either the end customer or a third party.
A summary of the options is present below in Table 1:
Microprocessor:
A general block diagram of the PCBA, 10, heating control configuration is shown in
The microcontroller has an embedded PWM (Pulse Width Modulation) waveform generator, which creates repeating pulses of voltage with varying pulse widths. These voltage pulses are used as control inputs to power switches, which provide power to the cartridge heating elements. While the voltage from the PWM Controller is high the PWM switches pass power from the system battery to the heating elements an is shown in
When power flows to the heating element the temperature rises on the elements as shown in
When the control voltage is low the temperature will decrease however the decrease will be at a slower rate than the temperature rise which yields a significant net gain in temperature. Note in the picture below the simulated temperature “TEMPERATURE_0[8:0]” which was generated from the 40% duty cycle goes up faster than the simulated temperature “TEMPERATURE_1[8:0]” which was generated by a 30% duty cycle wave as shown in
The temperature will stabilize based upon the average power applied to the coil and the combination of the thermal dissipation of all of the elements which are making contact with the heating element. The most significant heat dissipation mechanism is the evaporating glycol liquid. As the glycol evaporates the heat goes into the glycol rather than heating the heating element further. By changing the duty cycle the average power delivered to the coil is controlled which in turn directly affects the amount of glycol being vaporized at any given time.
By adjusting the average power to the coil the present invention will control the mixture of the two e-cig cartridges to allow the user to customize the mixture on the fly.
To reduce the instantaneous current from the battery the PWMs are driven out of phase to the effect that both PWM Power Switches are not conducting at the same times shown below in Table 6.
The PWM switches draws power straight from the system battery. Due to the fact that the battery voltage will drop as it is loaded down the software will need to adjust the PWM Duty Cycle to maintain a constant average power over the entire battery discharge life. The user will specify a percentage from 0% to 100% for a mixture ratio of each cartridge and the software will adjust the PWM Duty Cycle on the fly by monitoring the voltage from the battery. Additionally software will adjust the PWM of both cartridges to provide maximum power upon start up to get the starting temperature up to the estimated power point quick as possible. The software will then back the power down to keep the power in the required power envelope.
To protect the device from a runaway heater, the microcontroller software will limit the e-cig drag time to a predetermined amount of time followed by a predetermined cooling off period. Additionally the microcontroller will have a detection mechanism to detect that there is a cartridge present, and that the cartridge is genuine, before power is applied to the heating element.
In one embodiment, The present invention utilizes a prismatic 3.7v 1,300 mAh LiPo rechargeable battery, 38, placed in the bottom of the unit with the PCBA, 10, and connected via a 28 AWG wire-to-board Molex connector for ease in assembly. LiPo presents a safer alternative to Li-ion batteries in that they do not create as much heat or swelling during discharge. In addition a LiPo will not typically explode during a catastrophic failure of the casing. The prismatic shape is necessary to maximize the capacity of the battery relative to the space allowed. By increasing the battery capacity to 950 mAh the user will enjoy a large increase in time between charging even with two cartridges.
This configuration will allow a max of 4 W of average power. The following numbers assume the following:
Assuming 2 cartridges at 100% mixture each
A Nominal battery voltage of 3.7V
Battery density of 750 mAh de-rated for 80% battery life and max 80% battery drain allowance
Battery Density=750 mAh*80%*80%=480 mAh
Average Battery Voltage=3.7V
Battery Power Density=3.7V*480 mAh=1.776 Wh
Maximum Power Per Cartridge=4 W
Vape Time w/2× Cartridged at Max=1.776 Wh/(4 W*2)=0.222 h=13.32 min=799.2 sec
Average puff duration 2 seconds
Number of puffs per battery charge=(799.2 sec)/(2 sec/puff)=399.6 puffs
Speaker:
In another embodiment of the present invention has a small piezoelectric speaker, similar to those used in inner-ear hearing aids was to be placed on the PCBA, 36. The speaker would provide status tones for fluid and battery level as well as simulate the crackling sound of a traditional cigarette.
Micro-USB Type B:
In one embodiment, the present invention incorporates a micro-USB type B female receptacle, 37, that are placed on the PCB, 36. This USB is used in conjunction with a male micro USB type B cable for connection to a standard computer USB port as well as a separate inverter for use in a standard home electrical outlet. The micro-USB serves to charge the device as well as interact with the GUI (see GUI) to control features of the device. The device will utilize both the data and the 5V electrical lines in the USB. All charging circuitry is located on the PCB internally. Additionally this will allow connection to a mobile device such as tablets or smartphones. This configuration allows the user to continue using the electronic cigarette while charging and does not require disassembly of the product.
GUI (Graphical User Interface):
As shown in
In another configuration, a plastic battery housing (which includes the main PCBA, 142, with potentiometers for heater control, battery, 144, speaker, microphone, USB/GUI connection, 114, OLED screen, 112, toggle button, 116), a mouthpiece housing/cartridge access door, 108, e-liquid, 106 and heater cartridges, 104, air sensor, 146, a button mechanism to slide out the mouthpiece for use.
Some advantages of this embodiment include: mimic that of the preferred embodiment but give the user an OLED screen and rocker button that allows them to interact with their device manually. In addition the e-liquid cartridge and heating cartridge are separate, allowing for less waste per change out. The front assembly, 108, snaps into the battery assembly, 102, via a guide post and snap feature. The front assembly is the end that the user puts their mouth on to vaporize. The user can opt to use the mouth tip feature, or when the mouth tip, 120, is retracted they can just suck on the end of the front assembly at the elliptical opening.
As shown in
Liquid Cartridges:
When users want to change or insert the liquid cartridges, 106, they will push in the snap release, on the front assembly, 108, and pull the front assembly 108 off the unit. Users will then pull the old liquid cartridges 106 to remove them. Once removed users will insert new cartridges 106 until they click into place. Users will notice the cartridges will only go in one orientation.
Heater Cartridges:
To change the heater cartridges, 104, users will push in the snap release on the front assembly, 108, and remove the front assembly. Next a user will pull out the liquid cartridge assemblies, 106. Then grasp the heater cartridge, 104, one at a time and pull out and dispose of the unit. Each heater cartridge assembly is good for approx. 5 liquid cartridge assembly uses. This eliminates the need for throwing away the heater assembly every time a user changes liquid cartridges.
Battery Assembly:
The battery assembly, 102, has an access door, 118, that is translucent to let the user be able to see signals from the OLED screen, 112. The door is also hinged to allow the user to open the door and access the OLED screen, 112, micro usb, 114, and the rocker switch, 116, for manipulating modes on the screen.
PCB:
The proposed PCB, 142, for the new unit will be a rigid PCB in the battery assembly, 102. The vacuum switch has been removed. Activation now takes place via an airflow sensor, 146. The PCB houses an Air Flow Sensor, 146, at the anode collar, 140. The proposed PCB is a 2-layer board with all SMT components mounted to top and bottom. There are two separate liquid cartridges, 106, each with their own heater, 104, controlled by a Digital Potentiometer allowing for variable heater intensity and combining of flavors. The connections to the heater and AUTHENTICAION go through a custom anode, 140, using conductive inks. The battery, 144, connects to the board using a Molex wire-to-board assembly. The PCB also includes an OLED display, 112, controlled with a rocker switch, 116.
Air Flow Sensor:
The unit of the present invention will allow the user to identify the remaining fluid in their cartridge without having to remove the cartridge or do a visual check. By utilizing an Air Flow Sensor (AFS), 146, embedded into the center of the anode collar the new unit will be able to sense when there is a change in air flow, i.e. a user taking a puff. This will be used for heater activation; by obtaining the duration of the puff, a user is able to accurately predict the amount of liquid used in that puff.
Upon inserting a new liquid cartridge into the heater assembly and taking the first puff, the AFS passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the AUTHENTICAION, 162. The AUTHENTICAION acts as an accumulator. Once users reach 110% accumulation the unit no longer will activate the heater until a new liquid cartridge is inserted. The purpose of allowing the unit to achieve 110% is to allow for a 10% margin of error in liquid level calculation.
As the user depletes the liquid in the cartridge they are notified of the remaining liquid level via the OLED, 112. This feature allows the user to easily identify when a new liquid cartridge is needed. Once the user reaches −10% the OLED flashed red and a new liquid cartridge must be inserted.
The AFS from a technical aspect:
The PTFD10 is a thermal flow sensor die that measures the flow of a gaseous medium across the die using the thermo transfer (calorimetric) principle. The sensor die is comprised of a central heater element (resistor), and two clusters of 20 thermocouples each positioned symmetrically up and downstream of the heater. The upstream thermocouples are cooled by the flow and the downstream ones are heated due to heat transport from the heater in the flow direction. The output signal is the differential voltage of up and downstream thermocouples.
This unit offers two key advantages over traditional MEMS flow sensors. First, thermocouples are used for temperature sensing instead of resistors, achieving ultra-low noise to signal, and enabling simplified circuitry. Second, an innovative solid thermal isolation base is used for the heater and the hot junctions of the thermocouples, eliminating fragile membrane or surface cavity.
Operating Temperature: −40 C to 125 C
Overpressure: 15 bar (217 PSI)
Heating Current: 6.5 mA
Response Time: 3 ms
Microphone:
In another embodiment of the present invention will allow the user to identify the remaining fluid in their cartridge without having to remove the cartridge or do a visual check. By utilizing a microphone embedded into the center of the anode collar the new unit will be able to sense when there is a puff occurring by listening for the sound of inhalation. The frequency of the sound of inhalation should remain constant due to the configuration of the air intake holes on the device. When a user puffs on the device air is drawn into the unit, this air creates a sound based on the configuration of the holes. The microphone is tuned to the frequency of this sound and activates based on it. The microphone will not activate based on any other sound, thereby removing the possibility of a false activation.
This alone will be used for heater activation; by obtaining the duration of the puff, users should be able to accurately predict the amount of liquid used in that puff.
Upon inserting a new liquid cartridge into the heater assembly and taking the first puff the microphone passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the authentication, 162. The authentication acts as an accumulator. Once users reach 110% accumulation the unit no longer will activate the heater until a new liquid cartridge is inserted. The purpose of allowing the unit to achieve 110% is to allow for a 10% margin of error in liquid level calculation.
As the user depletes the liquid in the cartridge, they are notified of the remaining liquid level via the OLED. This feature allows the user to easily identify when a new liquid cartridge is needed. Once the user reaches −10% the OLED flashed red and a new liquid cartridge must be inserted.
Microphone from a Technical Aspect:
Analog Devices—ADMP404
The ADMP404 is a high quality, high performance, low power, and analog output bottom-ported omnidirectional MEMS microphone. The unit includes a MEMS microphone element, an impedance converter, and an output amplifier. The sensitivity specifications make it an excellent choice for near field applications. The unit has a high SNR and flat, wideband frequency response, plus its low current consumption enables long battery life for portable applications. The ADMP404 is halide free.
One preferred configuration is in Table 7 below:
NVRAM:
In one embodiment, the Liquid Cartridge, 106, will have a 4 pin, SPI interface, and an authentication device such as Non-Volatile Random Access Memory (NVRAM) chip, 162, embedded into the PCBA, 160. The liquid cartridge will have 4 electrical contacts on it, 158, which will supply power and data lines from the authentication to the PCB, 142.
In one embodiment the authentication will contain an identifying serial number for use in quality control, easily allowing the manufacturer to identify product lots in the case of a needed product recall or other customer care issue.
The NVRAM will contain the data as to the current fluid level remaining in the fluid cartridge. This serves four purposes:
Concerning number 4 (above), the present invention contemplates a configuration constructed to store all liquid level information on the PCB in the battery assembly. The Microcontroller would be informed of a new liquid cartridge being inserted via a simple switch in the heater assembly that became depressed once a cartridge was inserted. This presented multiple issues for evaluation:
By placing the authentication on the fluid cartridge itself, and storing the liquid level state on it, the invention will bypass the above issues. Each time a puff is taken the microcontroller on the battery PCB makes a call to the authentication to update its usage and reads the previous state. This previous state information is then transmitted back to the battery assembly PCB and a determination is made at to the total liquid level remaining.
The NVRAM, in one embodiment is desired due to its low price point and durability. Technical information is as follows:
Memory Size: 8 Kbit
Organization: 1K×8
Data Retention: 100 years
Maximum Clock Frequency: 5 MHz
Maximum Operating Current: 5 mA
Operating Supply Voltage: 3.3V
Maximum Operating Temp: +85 C
Package: UDFN
Access Time: 75 ns
Minimum Operating Temp: −40 C
Interface: SPI
One preferred shown in
In one embodiment, the present invention includes a custom socket 138, that has been configured to allow the heater cartridge 104, assembly to make a 90 degree connection to the PCB 142. This socket is an injection molded part which then goes through a 3D-MID process (3D-MID stands for Molded Interconnect Devices or three-dimensional injection molded circuit boards. By integrating mechanical and electronic functions and three-dimensional configuration the optimal usage of space is achieved. Moreover, large scale integration density of mechanical and electronic functions is possible and savings can be made on components and process steps. In turn, this affords a high degree of configuration flexibility to apply conductive inks to the part, effectively turning the molded part into a SMT component for connection to the PCB. The pins of the heater cartridge slide into sockets, which are coated with the conductive ink (mixture of Nickel and Gold). Those sockets then follow traces, which are similar to the copper traces utilized in standard PCB's. The traces make their way to SMT pads, which are then soldered to the board providing a connection from the PCB to the heaters and authentication. Being that the present invention is utilizing two separate heaters and two separate authentication cartridges, the IC Socket has a total of 10 socket connections. The socket also serves as a mount for the activation method (See Microphone and Air Flow Sensor).
In one embodiment, the present invention utilizes two digital potentiometers, one for each heater, to allow the user 5 “heater intensity” settings. These settings range from 2.8V to 3.5V. The user can select the settings via the OLED, 112, or the GUI.
Many manufacturers, regardless of product, will activate devices (a heater in our case) with a variable pulse width modulation scheme (PWM) which creates confusion in what voltage is actually being applied to the heater, and has created much debate in the e-cig arena. The invention has an adjustable regulator that will output a constant DC voltage based on a digital potentiometer. This method is extremely accurate. So if the unit is sending a certain voltage, it will be that voltage without any question. It is not pulsing, it is constant, and so there are no pulse widths to measure and average (Vrms).
The present invention utilizes a 52×36 pixel OLED display, 112. The display will be used to show battery and liquid life in each cartridge, as well as heater intensity of each heater. The OLED is paired with a miniature rocker switch, 116, which allows the user to cycle through the different screens as well as makes changes to the variable voltage function. The logic of the screen and rocker is as follows:
If at any time there is no input for 15 seconds the screen shuts off.
OLED Technical Information:
The present invention utilizes a prismatic 3.7v 1,300 mAh LiPo rechargeable battery, 144, placed in the top of the unit and connected via a 28 AWG wire-to-board Molex connector for ease in assembly. LiPo was chosen due to its high-energy capacity and low self-discharge rate. LiPo also presents a safer alternative to Li-ion batteries in that they do not create as much heat or swelling during discharge. In addition a LiPo will not typically explode during a catastrophic failure of the casing. The prismatic shape is necessary to maximize the capacity of the battery relative to the space allowed. By increasing the battery capacity to 1,300 mAh the user will enjoy a large increase in time between charging.
Accordingly the battery should provide:
Battery of 1300 mAh converted to seconds is 4,680,000 of 1 mA current.
Assume a 30 second cycle between puffs is a full run cycle; a shorter cycle will only give us more available puffs.
1,600 mA/s for the heaters (assuming max vapor intensity setting)
50 mA for the OLED display
40 mA for pressure sensor/micro and support circuitry
So for three seconds unit will consume 1,690 mA×3=5,070 mA and the remaining 27 seconds were in “low power mode” consuming only 5 mA (double our real calculation).
So for 30 seconds unit will consume 5,070+135=5,205 mA seconds of our total 4,680,000.
That means unit will have 4,680,000/5,205=899 30 second periods for a total time of 899/2 (2 per minute)=449.5 minutes or 7.5 hours before the battery dies.
The previous battery provided for 200-300 puffs, our new configuration should allow for 899 puffs per cartridge (total of 1,798 and dependent on vapor intensity setting), a drastic increase.
A fuel gauge will also be implemented onto the PCB to provide the user a readout of their current charge level via the OLED display, which can be checked at any time. When battery is depleted the OLED, 7, will flash red indicating a charge is needed. The fuel Gauge will also provide information to the GUI (graphical user interface) when connected to a computer and provide additional information such as the number of charges to date, the amperage and voltage, and diagnostics.
Battery Technical Information:
A small piezoelectric speaker, similar to those used in inner-ear hearing aids was to be placed on the PCB, 142, in the battery assembly. 102. The speaker would provide status tones for fluid and battery level as well as simulate the crackling sound of a traditional cigarette.
Micro-USB Type B:
In one embodiment, the present invention incorporates a micro-USB type B female receptacle, 114, that are placed on the PCB, 142. This USB is used in conjunction with a male micro USB type B cable for connection to a standard computer USB port as well as a separate inverter for use in a standard home electrical outlet. The micro-USB serves to charge the device as well as interact with the GUI (see GUI) to control features of the device. The device will utilize both the data and the 5V electrical lines in the USB. All charging circuitry is located on the PCB internally. Additionally this will allow connection to a mobile device such as tablets or smartphones. This configuration allows the user to continue using the electronic cigarette while charging and does not require disassembly of the product as shown in
GUI (Graphical User Interface):
As shown in
In another embodiment, the present invention overcomes the problems referenced in the background of invention section by providing an oval e-cig configuration to maximize space while still emulating the feel of a traditional round e-cigarette. This configuration includes a liquid cartridge/mouthpiece, 172, heater cartridge, 174 and battery assembly, 176 (which houses the anode, 174, PCBA, 187, vacuum switch, 186, battery, 188, speaker and microphone, micro USB port, 192).
The advantages of this embodiment allow for a larger battery and volume of the e-fluid to be obtained by altering the geometry to an oval shape but not increasing the overall size compared to the conventional round e-cigarettes. In addition a micro USB port is added to the tip to allow users to charge their device without having to remove the e-liquid and heater cartridges. This allows the device to be used while charging.
Liquid Cartridges:
When users want to change or insert the liquid cartridges, 172, they will pull the cartridge out of the heater, 174, and insert new cartridges. Once removed users will insert new cartridges until they click into place. Users will notice the cartridges will only go in one orientation. A SMT LED (red, yellow, green), will be placed on the PCB next to the anode collar, 186, to provide a reading of the available remaining fluid in the fluid cartridge. The LED will activate automatically after every 5 puffs taken. Once the fluid cartridge is empty the LED will flash red. The LED receives its information from the microprocessor and the authentication located on the fluid cartridge. This will provide the user with an easy way of monitoring liquid level without the need to remove the cartridge.
Heater Cartridges:
To change the heater cartridges users will separate the heater assembly, 174, from the battery assembly, 176, by pulling. Next a user will pull out the liquid cartridge assemblies, 172, from the heater, 174. Each heater cartridge assembly is good for approx 5 liquid cartridge assembly uses. This eliminates the need for throwing away the heater assembly every time a user changes liquid cartridges.
PCB:
The PCB, 187, for the present invention will be either a flex or rigid PCB spanning the entire length of the battery assembly, 176. The vacuum switch has been removed. Activation now takes place via a signal from the digital potentiometer. The digital potentiometer receives its signal to activate from either the air flow sensor or microphone. The PCB houses a pressure transducer, 175, at the anode collar, 186, and Micro USB, 192, at the ash tip. The proposed PCB is a four layer board with all SMT components mounted to top and bottom. The connections to the heater and battery are rigid connections preventing twist and providing for stronger joints.
Pressure Transducer:
There is a window allowing for a visual check if desired however the pressure transducer, 175, will identify the fluid level. By utilizing a pressure transducer embedded into the center of the anode collar the new unit will be able to sense when there is a change in pressure, i.e. a user taking a puff. This alone could be used similar to the “old unit” for heater activation; however, it is not used for this function in the new configuration. Instead, by obtaining the duration and strength (pressure) of the puff, the present invention will be able to accurately predict the amount of liquid used in that puff. Upon inserting a new liquid cartridge into the heater assembly and taking the first puff the pressure transducer, 175, passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the authentication, 205. The authentication acts as an accumulator. Once users reach 110% accumulation the unit no longer will activate the heater until a new liquid cartridge is inserted. One purpose of allowing the unit to achieve 110% is to allow for a 10% margin of error in liquid level calculation.
As the user depletes the liquid in the cartridge they are notified of the remaining liquid level via a LED ring on the anode collar. Green for >60% full, Yellow for >20% full, Red for <20%. This feature allows the user to easily identify when a new liquid cartridge is needed. Once the user reaches −10% the collar flashes red and a new liquid cartridge must be inserted.
NVRAM:
The proposed Liquid Cartridge will have a four pin, SPI interface, Non-Volatile Random Access Memory (NVRAM), 205, chip embedded onto PCBA, 204 or other authentication as descried herein. The liquid cartridge will have 4 electrical contacts on it, which will supply power and data lines from the NVRAM to the PCB.
The authentication will contain an identifying serial number for use in quality control, easily allowing the manufacturer to identify product lots in the case of a needed product recall or other customer care issue.
The authentication will contain the data as to the current fluid level remaining in the fluid cartridge. This serves four purposes:
Concerning purpose 4, the present invention, in one embodiment, is configured to store all liquid level information on the PCB in the battery assembly. The Microcontroller would be informed of a new liquid cartridge being inserted via a simple switch in the heater assembly that became depressed once a cartridge was inserted. This presented multiple issues:
By placing the authentication on the fluid cartridge itself, and storing the liquid level state on it, the invention bypasses the above issues. Each time a puff is taken the microcontroller on the battery PCB makes a call to the authentication to update its usage and reads the previous state. This previous state information is then transmitted back to the battery assembly PCB and a determination is made at to the total liquid level remaining, activating the Liquid Cartridge Level LED.
The NVRAM is desirable in one embodiment due to low price point and durability. Technical information is as follows:
The new unit utilizes one digital potentiometer to allow the user 5 “heater intensity” settings. These settings range from 2.8V to 3.5V. The user can select the settings via GUI,
Manufacturers, regardless of product, will activate heaters with a variable pulse width modulation scheme (PWM), which creates confusion in what voltage is actually being applied to the heater. In this configuration an adjustable regulator that will output a constant DC voltage based on a digital potentiometer.
This method is extremely accurate.
LiPo Battery:
A custom “D” shaped 3.7v 850 mAh LiPo rechargeable battery, 188, will be wrapped around the rigid PCB in the battery cartridge. LiPo was chosen due to its high energy capacity and low self-discharge rate, as well as its ability to be custom shaped to the applications needs. LiPo also presents a safer alternative to Li-ion batteries in that they do not create as much heat or swelling during discharge. In addition a LiPo will not typically explode during a catastrophic failure of the casing. The “D” shape is necessary to maximize the capacity of the battery relative to the space allowed. Being that the PCB sits uneven in the battery cartridge the battery itself has to be larger on one side and smaller on the other, or a shape similar to the letter “D”. The battery will have two rigid connections to the PCB decreasing the failure potential presently seen in light wire gauges. By increasing the battery capacity to 850 mAh the user will enjoy a large increase in time between charging.
Accordingly following calculations for our battery should provide:
Battery of 850 mAh converted to seconds is 3,060,000 of 1 mA current.
Assume a 30 second cycle between puffs is a full run cycle, a shorter cycle will only give us more available puffs.
800 mA/s for the heater.
50 mA for the LED's (this is double our realistic amount)
40 mA for pressure sensor/micro and support circuitry
So for three seconds consume 890 mA×3=2670 mA and the remaining 27 seconds were in “low power mode” consuming only 5 mA (double our real calculation).
So for 30 seconds consume 2670+135=2,805 mA seconds of our total 3,060,000.
That means e cigs of the invention have 3,060,000/2,805=1,091 30 second periods for a total time of 1091/2 (2 per minute)=546 minutes or 9.09 hours before the battery dies.
The previous battery provided for 200-300 puffs, the invention allows for 1,091 puffs, a drastic increase.
A fuel gauge will also be implemented onto the PCB to provide the user a read out of their current charge level via a LED (see Ash Tip LED) on the ash tip, which can be checked at any time by pressing and holding the ash tip push button for 1 second. When battery is depleted the ash tip will flash red indicating a charge is needed. The fuel Gauge will also provide information to the GUI (graphical user interface) when connected to a computer and provide additional information such as the number of charges to date, the amperage and voltage, and diagnostics.
Battery Technical Information:
A SMT LED RGB (red, blue, green), 190, will be placed on the PCB near the ash tip, and will glow when the user is inhaling to simulate burning ash on a traditional cigarette. A push button, 194, on the battery end, ash tip, will allow the user to select between six colors via color mixing as well as turning the LED completely off by a quick depress of the button. The seven modes will cycle upon pushing the button, e.g. ash tip is red, seven pushes of the button to be at the back a red ash tip. By allowing the user to change the ash tip color to another color, or off, helps reduce the similarity to a real cigarette thereby avoiding confusion in public.
The ash tip LED will also serve as a battery fuel indicator. Receiving its information from the Fuel Gauge located on the PCB, the LED will provide readout of the current battery charge. When the user depresses the pushbutton for one (1) second the LED will illuminate red, yellow, or green to alert the user to the state of charge. The user will automatically be informed with each state change after a puff. As an example, should the state change from green to yellow, the user will be automatically informed via the ash tip glowing yellow for one second after a puff is taken. The ash tip will also flash red once the battery is fully discharged.
Micro-USB Type B:
The present invention provides a new dongle for charging and also has a micro-USB type B female adapter, 192, at the ash tip end for attaching to either a computer or adapters and at the opposite another dongle has a micro USB connection. This is a simple push pull connection very typical of an average cell phone connection. No chance of over twisting or destroying the battery. When users plug in the new dongle micro USB adapter and improved battery configuration and circuit configuration, the present invention provides it will take between 15 min. and 40 min. to charge the new battery as well as the user is still able to use the device while charging. The micro-USB serves to charge the device as well as interact with the GUI (see GUI) to control features of the device as shown in
GUI (Graphical User Interface):
A GUI,
The heater configuration, 206, utilizes 800 mA at every activation, and is using a 3.7 V 800 mA hour battery and is creating a vapor of approximately 3.75 μL at each activation. This is a 24% less power usage than the old configuration and a 100% increase in vapor output. The new heater performance in 1.5 seconds is 375° F. and in 2 seconds reaches 390° F. This is due to the new heater that optimizes resistance versus surface area of heater that makes contact with the e liquid. The new heater configuration is a custom configuration that does not exist in the marketplace right now. The invention is utilizing a high heat plastic housing substrate and attaching Nichrome raceways in a stamped or laser cut manufacture process. The manufacturing process used to make this heater is a new configuration. One of the advantages of the new heater configuration is the optimization of the surface area of the metal tracings that actually make contact with the E liquid, which is wicked on to a fiberglass disc Pad. By creating more surface area of the metal tracings making contact with the actual E liquid produces more vapor. The old configuration heater utilizing 0.004 in diameter Nichrome wire wrapped around a wick only makes contact with the E liquid by approximately ½ the diameter of the Nichrome wire. This configuration minimizes the wire contact with the e-liquid thus producing less vapor during each activation. Another advantage of this new heater configuration is a controlled manufacturing process, which produces repeatable results every time a unit is manufactured.
The old method allows for the human error factor. The new method of manufacture for the heater assembly is a controlled manufacturing process that does not allow for the human error factor. This creates a better quality controlled manufactured product. The complete heater pad assembly includes of a Nichrome heater subassembly, a scavenging pad which works as a wick for the E liquid, five electronic pins for electronic transmission to electronic components, and an insulation ring which holds the scavenging pad up against the raceways on a high heat plastic perforated disc. The insulation ring holds all the components together and also creates insulation between the heat of the tracings and the outer diameter of the electronic cigarette housing to minimize heat felt by the consumer at the touch of their fingers. Another advantage of this new heater configuration is the capability of assembling all components in an automated assembly sequence. This automated assembly will also eliminate human error and increase the quality of the end product. The new heater assembly configuration is a machine-manufactured configuration. This configuration will not allow for human error factor. Since an electronic circuit board is driving the new heater, the present invention includes software application that will enable us via the GUI software to adjust the heater to a preferred volume of vapor output via a digital potentiometer located on the main PCB. Adjusting the voltage and amperage to the heating element will control this.
On one embodiment, the present invention overcomes the problems referenced in the background of invention section by including of a round e-cig configuration similar to current products but reduces the inefficiencies. This configuration includes a liquid cartridge/mouthpiece, 216, heater cartridge, 214 and battery assembly, 212 (which houses the anode, 218, PCBA, 220, vacuum switch, battery, speaker and microphone).
Liquid Cartridges:
When users want to change or insert the liquid cartridges, 216, they will pull the cartridge out of the heater, 214, and insert new cartridges. Once removed users will insert new cartridges until they click into place. Users will notice the cartridges will only go in one orientation. A SMT LED (red, yellow, green) will be placed on the PCB next to the anode collar, 218, to provide a reading of the available remaining fluid in the fluid cartridge. The LED will activate automatically after every 5 puffs taken. Once the fluid cartridge is empty the LED will flash red. The LED receives its information from the microprocessor and the authentication located on the fluid cartridge. This will provide the user with an easy way of monitoring liquid level without the need to remove the cartridge.
Heater Cartridges:
To change the heater cartridges users will separate the heater assembly, 214, from the battery assembly, 212, by pulling. Next a user will pull out the liquid cartridge assemblies, 216, from the heater, 214. Each heater cartridge assembly is good for approximately 5 liquid cartridge assembly uses. This eliminates the need for throwing away the heater assembly every time a user changes liquid cartridges.
Capacitive touch technology of the present invention has been implemented into the liquid cartridge, 216. This technology is based on capacitive coupling, which takes human body capacitance as input. In one embodiment the electrical contact 266 is media used for sensing, and is a copper ring, 266. The copper ring was chosen over other methods of Indium tin oxide (ITO) and printed ink due to its lower price point and ease of assembly. Size and spacing of the capacitive touch sensor have proven to be very important to the sensor's performance. In addition to size and spacing the type of ground plane was also taken into consideration. With the sensor being parasitized, the proposed Vectra material provides an excellent ground plane due to its ability to limit the concentration of e-field lines when no conductive object is present.
While the sensor itself is important, the software and hardware running it are equally important. Being that the heater assembly is a semi-disposable product it is cost prohibitive to place the hardware and software in the heater assembly. All hardware and software are housed on the main PCB in the battery cartridge allowing the sensor to be swapped out with a new one as needed. By tweaking the software we are able to reduce the false activations caused by fingers so that the heater should only activate in the presence of lips coming in contact with the sensor. To our knowledge this is the first time capacitive touch has been used in this manner as most applications seek activation with the fingers.
It is of note that the type of capacitive sensing system used is “absolute capacitance” as opposed to “mutual capacitance”. In absolute capacitance the lips load the sensor, or increase the capacitance to ground.
The major benefit of using capacitive touch technology is that the user must first place their lips on the device prior to inhaling. Though this time period is short, it does allow the heater to start heating up prior to the user inhaling, thereby increasing the total vapor received per puff. To our knowledge the only other offering in the market that allows pre-heating requires the user to press a tactile button to activate the heater, with the heater staying active as long as the user holds the button down.
Air Flow:
The present invention has a unit airflow enters in at the anode collar, 218, through vent holes through the anode colors, through the silicone seal, into the heater assembly exiting the heater assembly into an air cooling chamber, and then through a hollow tube in the center of the liquid assembly cartridge assembly and into a user's lungs. The advantage of this configuration is we do not pull any air across the circuit board or the battery, which may leak vapors. We get a clean airflow from the outside atmosphere through our heater assembly through our cooling chamber and straight into a user's lungs. The illustration below represents this airflow and our new configuration.
PCB:
The PCB, 220, unit of the present invention provides for a new unit that will be either a flex or rigid PCB spanning the entire length of the battery assembly. The vacuum switch has been removed. Activation now takes place via a capacitive touch sensor. The PCB houses a pressure transducer at the anode collar, 218 and Micro USB, 232, at the ash tip configured to receive USB plug 236. The proposed PCB is a 4-layer board with all SMT components mounted to top and bottom. The connections to the heater and battery are rigid connections preventing twist and providing for stronger joints. The new PCB configuration will also ease assembly by being able to simply slide into the plastic housing and snap on the ash tip and anode collar.
Pressure Transducer:
There is a window allowing for a visual check if desired however the pressure transducer, 221 will identify the fluid level. By utilizing a pressure transducer embedded into the center of the anode collar the new unit will be able to sense when there is a change in pressure, i.e. a user taking a puff. This alone could be used similar to the “old unit” for heater activation; however, it is not used for this function in the new configuration. Instead, by obtaining the duration and strength (pressure) of the puff, the present invention will be able to accurately predict the amount of liquid used in that puff. Upon inserting a new liquid cartridge into the heater assembly and taking the first puff the pressure transducer, 221, passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the authentication, 262. The NVRAM acts as an accumulator. Once users reach 110% accumulation the unit no longer will activate the heater until a new liquid cartridge is inserted. One purpose of allowing the unit to achieve 110% is to allow for a 10% margin of error in liquid level calculation.
As the user depletes the liquid in the cartridge they are notified of the remaining liquid level via a LED ring on the anode collar, 218. Green for >60% full, Yellow for >20% full, Red for <20%. This feature allows the user to easily identify when a new liquid cartridge is needed. Once the user reaches −10% the collar flashes red and a new liquid cartridge must be inserted.
Microphone:
The new unit will allow the user to identify the remaining fluid in their cartridge without having to remove the cartridge or do a visual check. By utilizing a microphone, 238, embedded into the center of the anode collar the new unit will be able to sense when there is a puff occurring by listening for the sound of inhalation. The frequency of the sound of inhalation should remain constant due to the configuration of the air intake holes on the device. When a user puffs on the device air is drawn into the unit, this air creates a sound based on the configuration of the holes. The microphone is tuned to the frequency of this sound and activates based on it. The microphone will not activate based on any other sound, thereby removing the possibility of a false activation. This alone will be used similar to the “old unit” for heater activation; By obtaining the duration of the puff, we should be able to accurately predict the amount of liquid used in that puff.
Upon inserting a new liquid cartridge into the heater assembly and taking the first puff the microphone passes this information to the microcontroller. The microcontroller calculates the amount of fluid used and passes that information to the authentication. The authentication acts as an accumulator. Once we reach 110% accumulation the unit no longer will activate the heater until a new liquid cartridge is inserted. The purpose of allowing the unit to achieve 110% is to allow for a 10% margin of error in liquid level calculation.
As the user depletes the liquid in the cartridge they are notified of the remaining liquid level via a LED ring on the anode collar. Green for >60% full, Yellow for >20% full, Red for <20%. This feature allows the user to easily identify when a new liquid cartridge is needed. Once the user reaches −10% the collar flashes red and a new liquid cartridge must be inserted.
Microphone from a Technical Aspect:
Analog Devices—ADMP404
The ADMP404 is a high quality, high performance, low power, and analog output bottom-ported omnidirectional MEMS microphone. The unit includes of a MEMS microphone element, an impedance converter, and an output amplifier. The sensitivity specifications make it an excellent choice for near field applications. The unit has a high SNR and flat, wideband frequency response, plus its low current consumption enables long battery life for portable applications. The ADMP404 is halide free. One configuration is in Table 10 below:
NVRAM:
The proposed Liquid Cartridge 270 will have a four pin, SPI interface, Non-Volatile Random Access Memory (NVRAM), 262, chip embedded into it or can have any other authentication as discussed herein. The liquid cartridge will have one electrical contact, 266, on it, held on by clip, 264, which will supply power and data lines from the authentication to the PCB. The authentication will contain an identifying serial number for use in quality control, easily allowing the manufacturer to identify product lots in the case of a needed product recall or other customer care issue.
The authentication will contain the data as to the current fluid level remaining in the fluid cartridge. This serves four purposes:
Concerning purpose 4 (above), one embodiment provides for a configuration to store all liquid level information on the PCB in the battery assembly. The Microcontroller would be informed of a new liquid cartridge being inserted via a simple switch in the heater assembly that became depressed once a cartridge was inserted.
By placing the authentication on the fluid cartridge itself, and storing the liquid level state on it, we bypass the above issues. Each time a puff is taken the microcontroller on the battery PCB makes a call to the authentication to update its usage and reads the previous state. This previous state information is then transmitted back to the battery assembly PCB and a determination is made at to the total liquid level remaining, activating the Liquid Cartridge Level LED.
The NVRAM in one embodiment is preferred due to its low price point and durability. Technical information is as follows and shown in
The new unit utilizes one digital potentiometer to allow the user 5 “heater intensity” settings. These settings range from 2.8V to 3.5V. The user can select the settings via GUI,
Manufacturers, regardless of product, will activate heaters with a variable pulse width modulation scheme (PWM) which creates confusion in what voltage is actually being applied to the heater. In this configuration is an adjustable regulator that will output a constant DC voltage based on a digital potentiometer. This method is extremely accurate.
LiPo Battery:
The present invention is configured with a custom “e” shaped 3.7v 850 mAh LiPo rechargeable battery, 212, will be wrapped around the rigid PCB in the battery cartridge. LiPo was chosen due to its high-energy capacity and low self-discharge rate, as well as its ability to be custom shaped to the applications needs. LiPo also presents a safer alternative to Li-ion batteries in that they do not create as much heat or swelling during discharge. In addition a LiPo will not typically explode during a catastrophic failure of the casing. The “e” shape is necessary to maximize the capacity of the battery relative to the space allowed. Being that the PCB sits uneven in the battery cartridge the battery itself has to be larger on one side and smaller on the other, or a shape similar to the letter “e”. The battery will have two rigid connections to the PCB decreasing the failure potential presently seen in light wire gauges. By increasing the battery capacity to 850 mAh the user will enjoy a large increase in time between charging.
Accordingly the present invention encompasses the following calculations for the benefit battery optimization and should provide:
Battery of 850 mAh converted to seconds is 3,060,000 of 1 mA current.
The current range is 400-800 mA and the present invention has found that vapor is produced over the entire range. In one embodiment, the heater can go up to 1.2 A.
In one embodiment, 50 mA powers the LED's. However, the present invention encompasses range of about 5 mA up to as high as 150 mA. In one embodiment, 40 mA powers the pressure sensor/micro and support circuitry. However, the present invention encompasses range of about 5 mA up to as high as 116 mA.
Assume a 30 second cycle between puffs is a full run cycle; a shorter cycle will only give us more available puffs.
800 mA/s for the heater.
50 mA for the LED's (this is double our realistic amount)
40 mA for pressure sensor/micro and support circuitry
So for three seconds we consume 890 mA×3=2670 mA and the remaining 27 seconds were in “low power mode” consuming only 5 mA (double our real calculation).
So for 30 seconds we consume 2670+135=2,805 mA seconds of our total 3,060,000.
That means we have 3,060,000/2,805=1,091 30 second periods for a total time of 1091/2 (2 per minute)=546 minutes or 9.09 hours before the battery dies.
The previous battery provided for 200-300 puffs, the present invention should allow for 1,091 puffs, a drastic increase.
A fuel gauge will also be implemented onto the PCB to provide the user a read out of their current charge level via a LED (see Ash Tip LED) on the ash tip, which can be checked at any time by pressing and holding the ash tip push button for 1 second. When battery is depleted the ash tip will flash red indicating a charge is needed. The fuel Gauge will also provide information to the GUI (graphical user interface) when connected to a computer and provide additional information such as the number of charges to date, the amperage and voltage, and diagnostics.
Battery Technical Information:
A small piezoelectric speaker, 238, similar to those used in inner-ear hearing aids was to be placed on the PCB in the battery cartridge. The speaker would provide status tones for fluid and battery level as well as simulate the crackling sound of a traditional cigarette.
Micro-USB Type B:
The present invention provides a new dongle for charging and also has a micro-USB type B female adapter, 232, at the ash tip end for attaching to either a user's computer or adapters and at the opposite another dongle has a micro USB connection. This is a simple push pull connection very typical of a user's average cell phone connection. No chance of over twisting or destroying the battery. When users plug in the new dongle micro USB adapter and improved battery configuration and circuit configuration, the present invention provides it will take between 15 min. and 40 min. to charge the new battery as well as the user is still able to use the device while charging. The micro-USB serves to charge the device as well as interact with the GUI to control features of the device. One configuration is shown in
GUI (Graphical User Interface):
As shown in
The new heater configuration, 256 & 252, utilizes 800 mA at every activation, and uses a 3.7 V 800 mA hour battery and is creating a vapor of approximately 3.75 L at each activation. This is a 24% less power usage than the old configuration and a 100% increase in vapor output. In one embodiment, the new heater performance in 3 seconds is 375° F. and in 5 seconds reaches 390° F. In another embodiment, the new heater performance in 3 seconds is 250-375° F. an in 5 seconds reaches 300-500° F.
This is due to the new heater configuration that optimizes resistance versus surface area of heater that makes contact with the e liquid. Our new heater configuration is a custom configuration that does not exist in the marketplace right now. The present invention is utilizing a ceramic or nylon substrate and attaching Nichrome raceways almost in the same manner as laying up a circuit board. The manufacturing process used to make this heater is a new configuration. One of the advantages of our new heater configuration is the optimization of the surface area of the metal tracings that actually make contact with the E liquid which is wicked on to a fiberglass round disc Pad. By creating more surface area of the metal tracings making contact with the actual E liquid the present invention produces more vapor. The old configuration heater utilizing 0.004 in diameter Nichrome wire wrapped around a wick only makes contact with the E liquid by approximately ½ the diameter of the Nichrome wire. This configuration minimizes the wire contact with the liquid thus producing less vapor during each activation. Another advantage of this new heater configuration is a controlled manufacturing process, which produces repeatable results every time a unit is manufactured. The present invention also eliminates the human error factor in the old production method used in the old heater assembly where a line of 16 Chinese women are standing in line wrapping wire around a wick and soldering the wires together all in a hand assembly. The old method allows for the human error factor. The new method of manufacture for the heater assembly is a controlled manufacturing process that does not allow for the human error factor. This creates a better quality controlled manufactured product. The complete heater pad assembly includes a ceramic circuit board heater subassembly, a scavenging pad which works as a wick for the E liquid, five electronic pins for electronic transmission to electronic components, and an insulation ring which holds the scavenging pad up against the raceways on a ceramic perforated disc. The insulation ring holds all the components together and also creates insulation between the heat of the tracings and the outer diameter of the electronic cigarette housing to minimize heat felt by the consumer at the touch of their fingers. Another advantage of this new heater configuration is the capability of assembling all components in an automated assembly sequence. This automated assembly will also eliminate human error and increase the quality of the end product. The new heater assembly configuration is a machine-manufactured configuration. Since the electronic circuit board driving the new heater is included in developing a software application that will enable control via the GUI software to adjust the heater to a preferred volume of vapor output. It is contemplated that the amperage allowed to enter the heating element will control this.
While the invention has been described in its preferred form or embodiment with some degree of particularity, it is understood that this description has been given only by way of example and that numerous changes in the details of construction, fabrication, and use, including the combination and arrangement of parts, may be made without departing from the spirit and scope of the invention.
This application is a non-provisional of and claims benefit to each of U.S. Provisional Patent Application Ser. No. 61/718,336, filed Oct. 25, 2012; U.S. Provisional Patent Application Ser. No. 61/735,157, filed Dec. 10, 2012; and of U.S. Provisional Patent Application Ser. No. 61/735,164, filed Dec. 10, 2012, the disclosures of which are each incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6125082 | Reid | Sep 2000 | A |
20070267031 | Hon | Nov 2007 | A1 |
20100031968 | Sheikh | Feb 2010 | A1 |
20110277760 | Terry | Nov 2011 | A1 |
20120199146 | Marangos | Aug 2012 | A1 |
20130056013 | Terry | Mar 2013 | A1 |
20130081642 | Safari | Apr 2013 | A1 |
20150053217 | Steingraber | Feb 2015 | A1 |
20150245660 | Lord | Sep 2015 | A1 |
20160050975 | Worm | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20150053217 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61718336 | Oct 2012 | US | |
61735157 | Dec 2012 | US | |
61735164 | Dec 2012 | US |