Electronic compression and rebound control

Information

  • Patent Grant
  • 10737546
  • Patent Number
    10,737,546
  • Date Filed
    Friday, April 7, 2017
    7 years ago
  • Date Issued
    Tuesday, August 11, 2020
    3 years ago
  • Inventors
  • Original Assignees
    • Fox Factory, Inc. (Braselton, GA, US)
  • Examiners
    • Schwartz; Christopher P
Abstract
An electronic valve assembly for a vehicle suspension damper is described in which a first electronic valve is disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber. The first electronic valve controls flow of fluid from the compression region into the fluid reservoir chamber. A second electronic valve is disposed along a fluid flow path extending between a rebound region of the damping cylinder and the compression region. The second electronic valve controls flow of fluid from the rebound region into the compression. The first electronic valve does not reside in the fluid flow path extending from the rebound region into the compression region, and the second electronic valve does not reside in the fluid flow path extending from the compression region into the fluid reservoir chamber.
Description
BACKGROUND
Field of the Invention

Embodiments generally relate to a damper assembly for a vehicle. More specifically, the invention relates to an adjustable damper for use with a vehicle suspension.


Description of the Related Art

Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances, a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.


Conventional damping components provide a constant damping rate during compression or extension through the entire length of the stroke. Other conventional damping components provide mechanisms for varying the damping rate. Further, in the world of bicycles, damping components are most prevalently mechanical. As various types of recreational and sporting vehicles continue to become more technologically advanced, what is needed in the art are improved techniques for varying the damping rate.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1 is a perspective view of a vehicle suspension damper including an electronic valve assembly, in accordance with an embodiment of the present invention.



FIG. 2 is a cut-away view of a vehicle suspension damper depicted during compression, in accordance with an embodiment of the present invention.



FIG. 3 is a cut-away view of an electronic valve assembly, including a compression fluid flow path, in accordance with an embodiment of the present invention.



FIG. 4 is a cut-away view of a vehicle suspension damper depicted during compression, in accordance with an embodiment of the present invention.



FIG. 5 is a cut-away view of an electronic valve assembly including a rebound fluid flow path, in accordance with an embodiment of the present invention.



FIG. 6 is a cut-away view of an electronic valve assembly including a fluid flow path from a reservoir chamber back into the damping cylinder, in accordance with an embodiment of the present invention.



FIG. 7 is a schematic diagram depicting various sensors and a control system used in conjunction with an electronic valve assembly for adjusting a damping force in a vehicle suspension damper, in accordance with an embodiment of the present invention.





The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.


DESCRIPTION OF EMBODIMENTS

The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. Each embodiment described in this disclosure is provided merely as an example or illustration of the present invention, and should not necessarily be construed as preferred or advantageous over other embodiments. In some instances, well known methods, procedures, objects, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present disclosure.


Notation and Nomenclature


Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present Description of Embodiments, discussions utilizing terms such as “sensing” or the like, often refer to the actions and processes of a computer system or similar electronic computing device (or portion thereof) such as, but not limited to, a control system. (See FIG. 7) The electronic computing device manipulates and transforms data represented as physical (electronic) quantities within the electronic computing device's processors, registers, and/or memories into other data similarly represented as physical quantities within the electronic computing device's memories, registers and/or other such information storage, processing, transmission, and/or display components of the electronic computing device or other electronic computing device(s). Under the direction of computer-readable instructions, the electronic computing device may carry out operations of one or more of the methods described herein.


Overview of Discussion


As is generally known, shock absorbers, may be applied to single or multi-wheeled vehicles. These shock absorbers may include an electronic valve or a plurality of electronic valves. Sensors may be attached to the vehicle and provide information, to a control system attached to the electronic valve, on acceleration (with respect to a bicycle), and on acceleration, tilt, velocity and position (with respect to vehicles with more than two wheels). The control system accesses the sensor signals and actuates the electronic valve to provide variable damping. A detailed description of electronic valves and corresponding control of vehicle suspension dampers is found in U.S. Pat. No. 9,452,654 entitled “Method and Apparatus for An Adjustable Damper” dated Sep. 27, 2016 which is assigned to the assignee of the present application, and which is hereby incorporated by reference in its entirety herein.


Example conventional and novel techniques, systems, and methods for controlling vehicle motion are described herein. Herein, a novel electronic valve assembly and its functioning is described. This novel electronic valve assembly is not only utilized to perform the conventional methods for controlling a vehicle's motion, but also novel methods for controlling a vehicle's motion by enabling even more selective damping to occur.


Detailed Description of the Present Electronic Valve Assembly and Operation Thereof


FIG. 1 is a perspective view of a vehicle suspension damper 100. As shown in FIG. 1, vehicle suspension damper 100 includes a damping cylinder 102 and a reservoir chamber 104 in fluid communication with damping cylinder 102. Vehicle suspension damper 100 also includes an electronic valve assembly 106. FIG. 1 also includes a piston shaft 108 which can move telescopically with respect to damping cylinder 102. Although the present embodiment specifically refers to a twin-tube vehicle suspension damper, embodiments of the present invention are also well-suited to use with other types of vehicle suspension dampers including, but not limited to, a monotube vehicle suspension damper


Referring now to FIG. 2, a cut-away view of vehicle suspension damper 100 is shown. As shown in FIG. 2, vehicle suspension damper 100 includes a damping piston 110 coupled to piston shaft 108. Damping cylinder 102 includes an annular chamber 118 which surrounds the interior chamber in which damping piston 110 travels. In the embodiment of FIG. 2, damping cylinder 102 includes bypass openings (typically shown as 112) which fluidically couple the interior of damping cylinder 102 with annular chamber 118. It will be understood that bypass openings 112 in combination with annular chamber 118 are utilized to achieve position dependent damping in vehicle suspension damper 100. Additionally, in some embodiments of the present invention, damping piston 110 will have valving therein to allow fluid to pass through damping piston 110 during compression movement (i.e. motion of piston shaft 108 and damping piston 110 into damping cylinder 102 as shown by arrows 120).


Referring still to FIG. 2, as is typically understood, damping piston 110 at least partially defines a compression region 114 residing above damping piston 110. Similarly, damping piston 110 also at least partially defines a rebound region 116 residing below damping piston 110. It will be understood that the volume of compression region 114 will vary as the position of damping piston 110 changes within damping cylinder 102. Similarly, it will be understood that the volume of rebound region 116 will vary as the position of damping piston 110 changes within damping cylinder 102. Moreover, it will be understood that compression region 114 and/or rebound region 116 may also be defined as including at least a portion of annular chamber 118 depending upon the state (compression or rebound) of vehicle suspension damper 100.


Referring again to FIG. 2, during compression of vehicle suspension damper 100, fluid will typically flow from above damping piston 110 into bypass openings 112, through annular chamber 118 and ultimately into rebound region 116 beneath damping piston 110. Additionally, in some embodiments, during compression, fluid will also pass from compression region 114 to rebound region 116 by passing through valving in damping piston 110. As piston shaft 108 enters damping cylinder 102, fluid is displaced by the additional volume of piston shaft 108 which enters damping cylinder 102. The fluid displaced by piston shaft 108 is referred to as shaft displaced fluid.


Referring now to FIG. 3, a cut-away view of electronic valve assembly 106 is shown including a fluid flow path, shown by arrow 316. Electronic valve assembly 106 includes a first electronic valve 300 and a second electronic valve 310. Among various other components, first electronic valve 300 includes a valve piston 302, and second electronic valve 310 includes a valve piston 312. The structure and operation of electronic valves are described in detail in U.S. Pat. No. 9,452,654 which, as stated above, is incorporated herein by reference in its entirety. Unlike the teachings of U.S. Pat. No. 9,452,654, in the present embodiments, first electronic valve 300 and second electronic valve 310 are disposed offset with respect to each other. As a result, in the present embodiments, valve piston 302 and valve piston 312 are not equally spaced from damping cylinder 102. More specifically, in the present embodiment, the distance of valve piston 302 from damping cylinder 102 is greater than the distance of valve piston 312 from damping cylinder 102. Furthermore, in the present embodiment, unlike the teachings U.S. Pat. No. 9,452,654, a channel 314 between first electronic valve 300 and second electronic valve 310 is disposed such that channel 314 is located in front of valve piston 302. That is, channel 314 is closer to damping cylinder 102 than is valve piston 302. Additionally, as shown in FIG. 3, in the present embodiment, channel 314 between first electronic valve 300 and second electronic valve 310 is disposed such that channel 314 is located behind valve piston 312. That is, valve piston 312 is closer to damping cylinder 102 than is channel 314.


Referring still to FIG. 3, several significant benefits are realized by the offset orientation of first electronic valve 300 and second electronic valve 310. In the present embodiment, first electronic valve 300 is disposed along a fluid flow path (see arrow 316) extending between compression region 114 (of FIG. 2) of damping cylinder 102 and reservoir chamber 104 (of FIG. 2). During compression, shaft displaced fluid flows from damping cylinder 102 through first electronic valve 300 along a fluid flow path indicated by arrow 316. The shaft displaced fluid flows through valve piston 302 and then (via an opening, not shown) into reservoir chamber 104 (See arrow 122 of FIG. 2). In so doing, in the present embodiment, first electronic valve 300 controls the flow of shaft displaced fluid from compression region 114 of damping cylinder 102 into reservoir chamber 104. Importantly, in the present embodiment, unlike the teachings of U.S. Pat. No. 9,452,654, shaft displaced fluid flows only through first electronic valve 300 and into reservoir chamber 104. That is, in the present embodiment, shaft displaced fluid does not flow through second electronic valve 310. Thus, in the present embodiment, second electronic valve 310 does not reside in the fluid flow path 316 extending from compression region 114 of damping cylinder 102 into reservoir chamber 104.


Importantly, it should be noted that in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Similarly, in various embodiments of the present invention, second electronic valve 310 is operated independently of first electronic valve 300. Thus, in various embodiments, the present invention provides independent control of compression and rebound damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with first electronic valve 300 to control vehicle suspension damper 100 and adjust a damping force therein is provided below.


With reference now to FIGS. 2 and 3, in the present embodiment, only shaft displaced fluid flows through first electronic valve 300. As a result, first electronic valve 300 can be smaller than a valve which needs to control more fluid than just the shaft displaced fluid. This allows electronic valve assembly 106 to be smaller and less expensive than a valve assembly that is required to control a larger volume of fluid. Further, as first electronic valve 300 operates by controlling a smaller volume of fluid (only the shaft displaced fluid), first electronic valve 300 is able to effectively provide control of compression damping for vehicle suspension damper 100 even during low speed movement of piston shaft 108 and damping piston 110. Additionally, the inclusion of bypass openings 112 and annular chamber 118, along with controlling shaft displaced fluid flow, enables the present embodiment to concurrently achieve position dependent damping and compression damping control even during low speed movement of piston shaft 108 and damping piston 110.


With reference now to FIG. 4, a cut-away view of vehicle suspension damper 100 is shown. During rebound of vehicle suspension damper 100 (i.e. movement of piston shaft 108 and damping piston 110 out of damping cylinder 102 as shown by arrows 402), fluid will typically flow from below damping piston 110 through annular chamber 118 and ultimately into compression region 114 above damping piston 110. Additionally, in some embodiments, during rebound, fluid will also pass from rebound region 116 to compression region 114 by passing through valving in damping piston 110. In some embodiments, during rebound, fluid is prevented from flowing through damping piston 110 such that all fluid must flow through annular chamber 118 and ultimately into compression region 114 above damping piston 110. In some embodiments of the present invention, bypass openings 112 (of FIG. 2 and not shown in FIG. 4) are closed during rebound such that fluid is prevented from flowing from annular chamber 118 through bypass openings into the region above damping piston 110. Additionally, as piston shaft 108 exits damping cylinder 102, fluid must replace the volume of piston shaft 108 which has exited damping cylinder 102. The fluid which replaces the volume of piston shaft 108 which has exited damping cylinder 102 is typically provided from reservoir chamber 104.


Referring now to FIG. 5, a cut-away view of electronic valve assembly 106 is shown including a fluid flow path, shown by arrow 504. As stated above, during rebound, fluid will typically flow from below damping piston 110 through annular chamber 118 and ultimately into compression region 114 above damping piston 110 (all of FIG. 4). As will be described in detail below, in the present embodiment, electronic valve assembly 106 controls the flow of fluid from rebound region 116 (of FIG. 4) and ultimately to compression region 114. As was described in conjunction with FIG. 3, electronic valve assembly 106 includes a first electronic valve 300 and a second electronic valve 310. Among various other components, first electronic valve 300 includes a valve piston 302, and second electronic valve 310 includes a valve piston 312. Again, the structure and operation of electronic valves are described in detail in U.S. Pat. No. 9,452,654 which, as stated above, is incorporated herein by reference in its entirety. Unlike the teachings of U.S. Pat. No. 9,452,654, in the present embodiments, first electronic valve 300 and second electronic valve 310 are disposed offset with respect to each other.


Referring again to FIGS. 4 and 5, in the present embodiment, during rebound, fluid flows from rebound region 116 through annular chamber 118 through opening 502, and through second electronic valve 310. More specifically, in the present embodiment, during rebound, fluid flows from beneath damping piston 110, into annular chamber 118, through opening 502, and through second electronic valve 310. As described below, second electronic valve 310 is configured to control flow of fluid from rebound region 116 of damping cylinder 102 and into compression region 114 of damping cylinder 102. Specifically, during rebound, fluid flows through valve piston 312 of second electronic valve 310, through channel 314 and then into compression region 114 of damping cylinder 102 along a fluid flow path indicated by arrow 504. Importantly, in the present embodiment, unlike the teachings of U.S. Pat. No. 9,452,654, during rebound, fluid flows only through second electronic valve 310 (and valve piston 312) and back into compression region 114 of damping cylinder 102. That is, in the present embodiment, rebound fluid does not flow through first electronic valve 300. Thus, in the present embodiment, first electronic valve 300 (including valve piston 302) does not reside in fluid flow path 504 extending from rebound region 116 of damping cylinder 102 into compression region 114.


With reference still to FIG. 5, first electronic valve 300 does not impede the flow of fluid during rebound. Thus, second electronic valve 310 experiences a less pressurized flow of fluid than would be experienced if fluid flow was subsequently impeded, during rebound, by first electronic valve 300. Additionally, as fluid flows rates tend be lower during rebound than compression, second electronic valve 310 can be smaller as it does not typically have handle higher fluid flow rates. As a result, second electronic valve 310 can be smaller than a valve which must control impeded fluid flow or greater fluid flow rates. These factors allow electronic valve assembly 106 to be smaller and less expensive than a valve assembly that is required to handle impeded fluid flow or high fluid flow rates during rebound.


Importantly, it should be noted that in various embodiments of the present invention, second electronic valve 310 is operated independently of first electronic valve 300. Similarly, in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Thus, in various embodiments, the present invention provides independent control of rebound and compression damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with second electronic valve 310 to control vehicle suspension damper 100 and adjust a rebound damping force therein is provided below.


With reference now to FIG. 6, a cut-away view of electronic valve assembly 106 is shown including a fluid flow path, shown by arrow 602. As stated above, during rebound, piston shaft 108 exits damping cylinder 102, and fluid must replace the volume of piston shaft 108 which has exited damping cylinder 102 (all of FIG. 4). The fluid which replaces the volume of piston shaft 108 which has exited damping cylinder 102 is typically provided from reservoir chamber 104 (of FIG. 4). In the present embodiment, unlike the teachings of U.S. Pat. No. 9,452,654, during rebound, fluid from reservoir chamber 104 flows only through first electronic valve 300 and back into compression region 114 of damping cylinder 102. More specifically, fluid flows from reservoir chamber 104, through an opening, not shown, through valve piston 302, and back into compression region 114 of damping cylinder 102 along a fluid flow path indicated by arrow 602. Hence, first electronic valve 300 is configured to control flow of fluid from reservoir chamber 104 to compression region 114 of damping cylinder 102. Importantly, in the present embodiment, fluid from reservoir chamber 104 does not flow through second electronic valve 310. Moreover, in the present embodiment, second electronic valve 310 (including valve piston 312) does not reside in fluid flow path 602 extending from reservoir chamber 104 into compression region 114.


As a result of fluid passing only through piston valve 302 and not also through valve piston 312, a greater flow rate and a less pressurized flow of fluid is achieved during rebound for the fluid flow coming from reservoir chamber 104 towards compression region 114. Additionally, as shaft displaced fluid flow rates tend be low, and especially low during rebound, first electronic valve 300 can be smaller as it does not typically have to handle higher fluid flow rates. As a result, first electronic valve 300 can be smaller than a valve which must control impeded fluid flow or greater fluid flow rates. These factors allow electronic valve assembly 106 to be smaller and less expensive than a valve assembly that is required to handle impeded shaft displaced fluid flow or high fluid flow rates during rebound.


As stated above, it should be noted that in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Thus, in various embodiments, the present invention provides independent control of the flow for the replacement of shaft displaced fluid during rebound damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with first electronic valve 300 to control the flow for the replacement of shaft displaced fluid and adjust a rebound damping force in vehicle suspension damper 100 is provided below.


With reference now to FIG. 7, a schematic diagram depicting various sensors and a control system used in conjunction with electronic valve assembly 106 for adjusting a damping force in vehicle suspension damper 100 is provided. The structure and operation of the various components of FIG. 7 are described in detail in U.S. Pat. No. 9,452,654 which, as stated above, is incorporated herein by reference in its entirety.



FIG. 7 for controlling vehicle motion is described in relation to controlling the operation of a multi-wheeled vehicle that has more than two wheels, such as, but not limited to, trucks, cars, and more specialized vehicles such as, but not limited to side-by-sides and snowmobiles, in accordance with embodiments. It should be appreciated that while the following discussion focuses on vehicles with four wheels, it should be appreciated that embodiments are not limited to controlling the operation upon vehicles with four wheels. For example, embodiments may be used with vehicles with three wheels, five wheels, six wheels, etc. Four-wheeled vehicles may have four vehicle suspension dampers attached therewith, one vehicle suspension damper attached to each wheel and to the vehicle's frame. In one embodiment, the embodiment depicted in FIG. 7 includes an electronic valve assembly 106 as described above.


Various components of FIG. 7 not only deduce the vertical acceleration values, but also deduce, from a received set of control signals (that include acceleration values associated with various vehicle components), the roll and pitch of a vehicle with more than two wheels. These measured acceleration values relate to the tilt (e.g., roll, pitch) of the vehicle and are compared to a database having thereon preprogrammed acceleration threshold values associated with vehicle components as it relates to tilt. Further, various components of FIG. 7 receive measured velocity values associated with user-induced events (e.g., turning a steering wheel, pressing/releasing a brake pedal, pressing/releasing the gas pedal, thereby causing a throttle to open/close). The control system compares these measured velocity values relating to user-induced events to a database having preprogrammed thereon velocity threshold values associated with vehicle components. Based on the comparison performed with regard to the measured acceleration values with the predetermined acceleration threshold values and the measured velocity values with the predetermined velocity threshold values, as well as the determined state of valves within various vehicle suspension dampers attached to vehicle components, the control system sends an activation signal to power sources of the vehicle suspension dampers. The activation signal activates the power source to deliver a current to one or more of first electronic valve 300 and second electronic valve 310 of electronic valve assembly 106. Once delivered, first electronic valve 300 and second electronic valve 310 of electronic valve assembly 106 adjust to a desired state. The desired state is configured to adjust the damping force to reduce or eliminate the tilt of the vehicle's frame. In other words, the orientation of the vehicle frame is placed as close to level as possible.


As will be described herein, various components of FIG. 7 also provide various system modes within which the vehicle suspension dampers may operate, along with control modes for affecting roll and pitch dynamics of the vehicle. Thus, described first herein are systems and methods for controlling a vehicle's motion by increasing and/or decreasing damping forces within a vehicle suspension damper in quick response to sensed movement of vehicle components (e.g., vehicle wheel base). These systems and methods may be used in various types of multi-wheeled vehicles, such as, but not limited to, side-by-sides (four-wheel drive off-road vehicle), snow mobiles, etc. These systems and methods may be used to control both the front and the rear shock. The systems and methods described herein quickly and selectively apply damping forces through the vehicle suspension dampers (that are coupled with both the vehicle's forks and the vehicle's frame). Such damping enables the vehicle's frame, and thus the vehicle's rider, to experience less acceleration than that being experienced by the wheel base(s).


The system 700 and method, as will be described, detects rolls, pitches, and heaves of four-wheeled vehicles. For example and with regard to detecting rolls, if a car turns a corner sharply left and begins to roll to the right, embodiments sense the velocity of the steering wheel as it is being turned, as well as the translational acceleration associated with the roll experienced by the vehicle. The translational acceleration (distance/time2) associated with the roll measures side accelerations. In response to this sensing and in order to control the roll, a control system causes the outer right front and back vehicle suspension dampers to firm up, in some embodiments. Of note, in some embodiments, the vehicle's pitch is measured by sensing the velocity of the throttle pedal as it is being pressed and/or released. In other embodiments, the vehicle's pitch may also be measured by sensing the velocity and/or the position of the throttle pedal as it is being pressed and/or released. In yet other embodiments, the vehicle's pitch is measured by sensing the acceleration of the vehicle. Of further note, the control system does not utilize throttle pedal information to measure roll.


In one embodiment, the system 700 includes electronic valve assembly 106 (that includes first electronic valve 300 and second electronic valve 310) and the control system 704. In one embodiment, the control system 704 includes the following components: a control signal accessor 756; a first comparer 706; a second comparer 710; a valve monitor 752; a control mode determiner 754; and an activation signal sender 750. The second comparer 710 compares the accessed user-induced inputs to predetermined user-induced inputs threshold values 748 found at, in one embodiment, the database 716 (in another embodiment, a database residing external to the control system 704. Further, in various embodiments, the control system 704 optionally includes any of the following: a database 716, a hold-off timer 726; a tracker 730; a hold logic delayer 732; a rebound settle timer 728; a weightings applicator 734; and a signal filter 736. The database 716, according to various embodiments, optionally includes predetermined acceleration threshold values 718 and predetermined user-induced inputs threshold values 748. In various embodiments, the predetermined user-induced inputs threshold values 748 include predetermined velocity threshold values 720. In other embodiments, the predetermined user-induced inputs threshold values include any of the following values: steering velocity threshold value; shock absorber velocity threshold value; brake velocity threshold value; steering position threshold value; throttle position threshold value; shock absorber position threshold value; and brake threshold value.


In one embodiment, the control system 704 may be part of a vehicle suspension damper 100 (that is, for example, on a side-by-side), or it may be wire/wirelessly connected to the control system 704. As will be discussed below, the control system 704 of FIG. 7 is further configured for comparing a set of values associated with at least one user-induced input (such as a user turning a steering wheel and the velocity resulting therefrom) with at least one user-induced input threshold value.


Embodiments of the present invention provide for a control system 704 that accesses a set of control signals 742 (control signal 742A, control signal 742B and control signal 742C; it should be appreciated that there may be any number of control signals, depending on the number of sensors coupled with vehicle components) that includes both acceleration values and a set of values associated with user-induced inputs (such as velocity values [of a steering wheel being turned and/or a throttle pedal being pressed upon and/or released] measured by a set of gyrometers). It should be appreciated that the set of sensors 740A, 740B and 740C (hereinafter, set of sensors 740, unless specifically noted otherwise) attached to the vehicle component 738A, 738B and 738C (hereinafter, vehicle component 738, unless specifically noted otherwise), respectively, may include one or more sensors, such as, but not limited to, accelerometers and gyrometers. In some embodiments, the acceleration values with respect to the four-wheeled vehicles are lateral (side-to-side motion) and longitudinal g's (forward and backwards motion). In other embodiments, the acceleration values with respect to four-wheeled vehicles are lateral g's, longitudinal g's and vertical g's (up and down motion). User-induced inputs, according to embodiments, are those inputs by a user that cause a movement to a vehicle component of the vehicle. For example, user-induced inputs may include, but are not limited to any of the following: turning a steering wheel; pressing a brake pedal (the ON/OFF resultant position of the brake pedal being pressed is measured); and pressing a throttle pedal (a velocity and/or position of the throttle pedal is measured). Thus, a set of values associated with the user-induced inputs may be, but are not limited to being, any of the following user-induced inputs: a measured velocity value of the turning of a steering wheel; a brake's on/off status; velocities associated with pressing down on the brake and/or the throttle pedal; and the difference in the positions of the throttle pedal before and after being pressed (or the absolute throttle position). Of note, the user-induced inputs that are measured are inputs received before acceleration is measured, yet relevant in quickly determining corrective damping forces required to control the roll, pitch and heave once experienced. Thus, the user-induced inputs are precursors to the sensed accelerations of various vehicle components (e.g., vehicle wheels).


Once these values (measured acceleration value and the set of values associated with the user-induced inputs) are accessed by the control signal accessor 756, the first comparer 706 and the second comparer 710 compare these values to threshold values, such as those found in the database 716 (a store of information). Further, according to embodiments, the activation signal sender 750 sends an activation signal to the power source 758 to deliver a current to one or more of first electronic valve 300 and second electronic valve 310 of electronic valve assembly 106, based upon the following: 1) the comparison made between the measured acceleration value and the predetermined acceleration threshold value 718 discussed herein; 2) the comparison made between the measured velocity of the steering wheel as it is being turned (the set of values associated with user-induced inputs) and the predetermined velocity threshold value 720 of the predetermined user-induced inputs threshold values 748; and 3) the monitoring of the state of electronic valve assembly 106.


It should be appreciated that embodiments may include, but are not limited to, other configurations having a control system in wire/wireless communication with the vehicle suspension damper to which it is controlling, such as: 1) a vehicle with only one control system that is wire and/or wirelessly connected to all vehicle suspension dampers attached thereto; 2) a vehicle with one control system attached to one vehicle suspension damper, wherein the one control system controls the other control systems attached to other vehicle suspension dampers (that are attached to different wheels) of the vehicle; and 3) a vehicle with one control system that is not attached to a vehicle suspension damper, wherein the one control system controls other control systems that are attached to vehicle suspension dampers on the vehicle.


It should be noted that any of the features disclosed herein may be useful alone or in any suitable combination. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be implemented without departing from the scope of the invention, and the scope thereof is determined by the claims that follow.

Claims
  • 1. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region of said damping cylinder into said fluid reservoir chamber;a second electronic valve disposed along a fluid flow path extending between a rebound region of said damping cylinder and said compression region of said damping cylinder, said second electronic valve configured to control flow of fluid from said rebound region of said damping cylinder into said compression region of said damping cylinder; andwherein said first electronic valve and said second electronic valve are disposed such that said first electronic valve does not reside in said fluid flow path extending from said rebound region of said damping cylinder into said compression region of said damping cylinder, and said second electronic valve does not reside in said fluid flow path extending from said compression region of said damping cylinder into said fluid reservoir chamber.
  • 2. The electronic valve assembly of claim 1 wherein said first electronic valve controls flow of fluid displaced by a piston shaft as said fluid displaced by said piston shaft flows from said compression region of said damping cylinder into said fluid reservoir chamber.
  • 3. The electronic valve assembly of claim 1 wherein said first electronic valve is configured to control flow of fluid from said fluid reservoir chamber to said compression region of said damping cylinder.
  • 4. The electronic valve assembly of claim 3 wherein said second electronic valve does not reside in a fluid flow path extending from said fluid reservoir chamber to said compression region of said damping cylinder.
  • 5. The electronic valve assembly of claim 1 wherein said first electronic valve and said second electronic valve can be operated independently of each other.
  • 6. A system for controlling vehicle motion, said system comprising: a sensor coupled with a vehicle, said sensor sensing said vehicle motion; anda vehicle suspension damper coupled with said sensor, said vehicle suspension damper adjusting a damping force therein, said vehicle suspension damper comprising: a damping cylinder;a damping piston movable within said damping cylinder;a compression region at least partially defined by said damping piston;a rebound region at least partially defined by said damping piston;a fluid reservoir chamber fluidically coupled to said damping cylinder; andelectronic valve assembly coupled with said sensor, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between said compression region and said fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region into said fluid reservoir chamber;a second electronic valve disposed along a fluid flow path extending between said rebound region and said compression region, said second electronic valve configured to control flow of fluid from said rebound region into said compression region; andwherein said first electronic valve and said second electronic valve are disposed such that said first electronic valve does not reside in said fluid flow path extending from said rebound region into said compression region, and said second electronic valve does not reside in said fluid flow path extending from said compression region into said fluid reservoir chamber.
  • 7. The system of claim 6 wherein said first electronic valve controls flow of fluid displaced by a piston shaft as said fluid displaced by said piston shaft flows from said compression region into said fluid reservoir chamber.
  • 8. The system of claim 6 wherein said first electronic valve is configured to control flow of fluid from said fluid reservoir chamber to said compression region.
  • 9. The system of claim 8 wherein said second electronic valve does not reside in a fluid flow path extending from said fluid reservoir chamber to said compression region.
  • 10. The system of claim 6 wherein said first electronic valve and said second electronic valve can be operated independently of each other.
  • 11. The system of claim 10 wherein independent operation of said first electronic valve and said second electronic provides independent control of compression and rebound damping of said vehicle suspension damper.
  • 12. A system for providing independent control of compression and rebound damping of a vehicle suspension damper, said system comprising: a sensor coupled with a vehicle, said sensor sensing motion of said vehicle; anda vehicle suspension damper, said vehicle suspension damper configured to adjust a damping force therein, said vehicle suspension damper comprising: a damping cylinder;a damping piston movable within said damping cylinder;a compression region at least partially defined by said damping piston;a rebound region at least partially defined by said damping piston;a fluid reservoir chamber fluidically coupled to said damping cylinder; andelectronic valve assembly coupled with said sensor, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between said compression region and said fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region into said fluid reservoir chamber;a second electronic valve disposed along a fluid flow path extending between said rebound region and said compression region, said second electronic valve configured to control flow of fluid from said rebound region into said compression region, said first electronic valve and said second electronic valve operable independently of each other; andwherein said first electronic valve and said second electronic valve are disposed such that said first electronic valve does not reside in said fluid flow path extending from said rebound region into said compression region, and said second electronic valve does not reside in said fluid flow path extending from said compression region into said fluid reservoir chamber, wherein independent operation of said first electronic valve and said second electronic provides independent control of said compression and rebound damping of said vehicle suspension damper.
  • 13. The system of claim 12 wherein said first electronic valve controls flow of fluid displaced by a piston shaft as said fluid displaced by said piston shaft flows from said compression region into said fluid reservoir chamber.
  • 14. The system of claim 12 wherein said first electronic valve is configured to control flow of fluid from said fluid reservoir chamber to said compression region.
  • 15. The system of claim 14 wherein said second electronic valve does not reside in a fluid flow path extending from said fluid reservoir chamber to said compression region.
  • 16. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region of said damping cylinder into said fluid reservoir chamber, said first electronic valve including a valve piston;a second electronic valve disposed along a fluid flow path extending between a rebound region of said damping cylinder and said compression region of said damping cylinder, said second electronic valve configured to control flow of fluid from said rebound region of said damping cylinder into said compression region of said damping cylinder; andwherein said first electronic valve and said second electronic valve are disposed such that fluid flowing along said flow path extending from said rebound region of said damping cylinder into said compression region of said damping cylinder does not flow through said valve piston of said first electronic valve.
  • 17. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region of said damping cylinder into said fluid reservoir chamber;a second electronic valve disposed along a fluid flow path extending between a rebound region of said damping cylinder and said compression region of said damping cylinder, said second electronic valve configured to control flow of fluid from said rebound region of said damping cylinder into said compression region of said damping cylinder, said second electronic valve including a valve piston; andwherein said first electronic valve and said second electronic valve are disposed such that fluid flowing along said flow path extending from said compression region of said damping cylinder into said fluid reservoir chamber does not flow through said valve piston of said second electronic valve.
  • 18. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising: a first electronic valve disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region of said damping cylinder into said fluid reservoir chamber, said first electronic valve including a valve piston;a second electronic valve disposed along a fluid flow path extending between a rebound region of said damping cylinder and said compression region of said damping cylinder, said second electronic valve configured to control flow of fluid from said rebound region of said damping cylinder into said compression region of said damping cylinder chamber, said second electronic valve including a valve piston; andwherein said first electronic valve and said second electronic valve are disposed such that fluid flowing along a flow path extending from said fluid reservoir chamber to said compression region of said damping cylinder does not flow through said valve piston of said second electronic valve.
  • 19. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising: a first electronic valve including a valve piston, said first electronic valve fluidically coupled to a reservoir chamber of said vehicle suspension damper;a second electronic valve including a valve piston, wherein said second electronic valve is offset from said first electronic valve such that a distance of valve piston of said first electronic valve from a damping cylinder of said vehicle suspension damper is greater than a distance of said valve piston of said second electronic valve from said damping cylinder;a channel disposed between said first electronic valve and said second electronic valve, said channel located such that a distance of said valve piston of said first electronic valve from said damping cylinder is greater than a distance of said channel from said damping cylinder;a first fluid flow path including said first electronic valve; anda second fluid flow path including said second electronic valve and said channel, wherein fluid is limited to flowing in said second fluid flow path during rebound.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 62/320,368, filed on Apr. 8, 2016, entitled “SINGLE VALVED TAILORED ELECTRONIC COMPRESSION AND REBOUND CONTROL” by Ivan Tong, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.

US Referenced Citations (558)
Number Name Date Kind
435995 Dunlop Sep 1890 A
1492731 Kerr May 1924 A
1575973 Coleman Mar 1926 A
1948600 Templeton Feb 1934 A
2018312 Moulton Oct 1935 A
2186266 Henry Jan 1940 A
2259437 Dean Oct 1941 A
2492331 Spring Dec 1949 A
2540525 Howarth et al. Feb 1951 A
2588520 Halgren et al. Mar 1952 A
2697600 Gregoire Dec 1954 A
2725076 Hansen et al. Nov 1955 A
2729308 Koski et al. Jan 1956 A
2784962 Sherburne Mar 1957 A
2838140 Rasmusson et al. Jun 1958 A
2846028 Gunther Aug 1958 A
2879971 Demay Mar 1959 A
2897613 Davidson et al. Aug 1959 A
2941629 Etienne et al. Jun 1960 A
2991804 Merkle Jul 1961 A
3087583 Bruns Apr 1963 A
3202413 Colmerauer Aug 1965 A
3206153 Burke Sep 1965 A
3284076 Gibson Nov 1966 A
3286797 Leibfritz et al. Nov 1966 A
3405625 Carlson et al. Oct 1968 A
3419849 Anderson et al. Dec 1968 A
3420493 Kraft et al. Jan 1969 A
3528700 Janu et al. Sep 1970 A
3537722 Moulton Nov 1970 A
3556137 Billeter et al. Jan 1971 A
3559027 Arsem Jan 1971 A
3584331 Richard et al. Jun 1971 A
3603575 Arlasky et al. Sep 1971 A
3605960 Singer Sep 1971 A
3701544 Stankovich Oct 1972 A
3714953 Solvang Feb 1973 A
3750856 Kenworthy et al. Aug 1973 A
3791408 Saitou et al. Feb 1974 A
3830482 Norris Aug 1974 A
3842753 Ross et al. Oct 1974 A
3861487 Gill Jan 1975 A
3941402 Yankowski et al. Mar 1976 A
3981204 Starbard et al. Sep 1976 A
3981479 Foster et al. Sep 1976 A
3986118 Madigan Oct 1976 A
4022113 Blatt et al. May 1977 A
4032829 Schenavar et al. Jun 1977 A
4036335 Thompson et al. Jul 1977 A
4072087 Mueller et al. Feb 1978 A
4103881 Simich Aug 1978 A
4121610 Harms et al. Oct 1978 A
4131657 Ball et al. Dec 1978 A
4139186 Postema et al. Feb 1979 A
4159106 Nyman et al. Jun 1979 A
4174098 Baker et al. Nov 1979 A
4183509 Nishikawa et al. Jan 1980 A
4287812 Iizumi Sep 1981 A
4305566 Grawunde Dec 1981 A
4333668 Hendrickson et al. Jun 1982 A
4334711 Mazur et al. Jun 1982 A
4337850 Shimokura et al. Jul 1982 A
4348016 Milly Sep 1982 A
4351515 Yoshida Sep 1982 A
4366969 Benya et al. Jan 1983 A
4387781 Ezell et al. Jun 1983 A
4474363 Numazawa et al. Oct 1984 A
4491207 Boonchanta et al. Jan 1985 A
4500827 Merritt et al. Feb 1985 A
4502673 Clark et al. Mar 1985 A
4548233 Wolfges Oct 1985 A
4570851 Cirillo et al. Feb 1986 A
4620619 Emura et al. Nov 1986 A
4634142 Woods et al. Jan 1987 A
4659104 Tanaka et al. Apr 1987 A
4660689 Hayashi et al. Apr 1987 A
4673194 Sugasawa Jun 1987 A
4709779 Takehara Dec 1987 A
4729459 Inagaki et al. Mar 1988 A
4732244 Verkuylen Mar 1988 A
4743000 Karnopp May 1988 A
4744444 Gillingham May 1988 A
4750735 Furgerson et al. Jun 1988 A
4765648 Mander et al. Aug 1988 A
4773671 Inagaki Sep 1988 A
4786034 Heess et al. Nov 1988 A
4815575 Murty et al. Mar 1989 A
4821852 Yokoya Apr 1989 A
4826207 Yoshioka et al. May 1989 A
4830395 Foley May 1989 A
4836578 Soltis Jun 1989 A
4838306 Horn et al. Jun 1989 A
4838394 Lemme et al. Jun 1989 A
4846317 Hudgens Jul 1989 A
4858733 Noguchi et al. Aug 1989 A
4919166 Sims et al. Apr 1990 A
4936423 Karnopp Jun 1990 A
4936424 Costa Jun 1990 A
4949989 Kakizaki et al. Aug 1990 A
4958706 Richardson Sep 1990 A
4975849 Ema et al. Dec 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat Jan 1991 A
5027303 Witte Jun 1991 A
5036934 Nishina et al. Aug 1991 A
5040381 Hazen Aug 1991 A
5044614 Rau Sep 1991 A
5060959 Davis et al. Oct 1991 A
5076404 Gustafsson Dec 1991 A
5080392 Bazergui Jan 1992 A
5105918 Hagiwara et al. Apr 1992 A
5113980 Furrer et al. May 1992 A
5152547 Davis Oct 1992 A
5161653 Hare Nov 1992 A
5163742 Topfer et al. Nov 1992 A
5178242 Nakamura et al. Jan 1993 A
5186481 Turner Feb 1993 A
5203584 Butsuen et al. Apr 1993 A
5207774 Wolfe et al. May 1993 A
5230364 Leng et al. Jul 1993 A
5236169 Johnsen et al. Aug 1993 A
5248014 Ashiba Sep 1993 A
5259487 Petek et al. Nov 1993 A
5263559 Mettner Nov 1993 A
5265902 Lewis Nov 1993 A
5277283 Yamaoka et al. Jan 1994 A
5284330 Carlson et al. Feb 1994 A
5293971 Kanari Mar 1994 A
5295563 Bennett Mar 1994 A
5307907 Nakamura et al. May 1994 A
5318066 Burgorf et al. Jun 1994 A
5328004 Fannin et al. Jul 1994 A
5347186 Konotchick et al. Sep 1994 A
5348112 Vaillancourt Sep 1994 A
5372224 Samonil et al. Dec 1994 A
5381952 Duprez Jan 1995 A
5390949 Naganathan et al. Feb 1995 A
5392885 Patzenhauer et al. Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5398787 Woessner et al. Mar 1995 A
5413196 Forster May 1995 A
5467280 Kimura Nov 1995 A
5480011 Nagai et al. Jan 1996 A
5551674 Johnsen Sep 1996 A
5553836 Ericson Sep 1996 A
5578877 Tiemann Nov 1996 A
5588510 Wilke Dec 1996 A
5597180 Ganzel et al. Jan 1997 A
5598337 Butsuen et al. Jan 1997 A
5601164 Ohsaki et al. Feb 1997 A
5611413 Feigel Mar 1997 A
5651433 Wirth et al. Jul 1997 A
5657840 Lizell Aug 1997 A
5687575 Keville et al. Nov 1997 A
5699885 Forster Dec 1997 A
5722645 Reitter Mar 1998 A
5803443 Chang Sep 1998 A
5806159 Inoue; et al. Sep 1998 A
5810128 Eriksson et al. Sep 1998 A
5813456 Milner et al. Sep 1998 A
5813731 Newman et al. Sep 1998 A
5818132 Konotchick et al. Oct 1998 A
5826935 Defreitas et al. Oct 1998 A
5872418 Wischnewskiy Feb 1999 A
5884921 Katsuda et al. Mar 1999 A
5937975 Forster Aug 1999 A
5947238 Jolly et al. Sep 1999 A
5952823 Sprecher et al. Sep 1999 A
5954318 Kluhsman Sep 1999 A
5956951 O'Callaghan Sep 1999 A
5971116 Franklin Oct 1999 A
5992450 Parker et al. Nov 1999 A
5996745 Jones et al. Dec 1999 A
5996746 Turner et al. Dec 1999 A
5999868 Beno et al. Dec 1999 A
6000702 Streiter Dec 1999 A
6035979 Foerster Mar 2000 A
6058340 Uchiyama et al. May 2000 A
6067490 Ichimaru et al. May 2000 A
6073536 Campbell Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6073736 Franklin Jun 2000 A
6092011 Hiramoto et al. Jul 2000 A
6092816 Sekine Jul 2000 A
6131709 Jolly et al. Oct 2000 A
6135434 Marking Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6151930 Carlson Nov 2000 A
6179098 Hayakawa et al. Jan 2001 B1
6199669 Huang et al. Mar 2001 B1
6213263 De Frenne Apr 2001 B1
6215217 Kurosawa et al. Apr 2001 B1
6217049 Becker Apr 2001 B1
6244398 Girvin et al. Jun 2001 B1
6254067 Yih Jul 2001 B1
6279702 Koh Aug 2001 B1
6293530 Delorenzis et al. Sep 2001 B1
6296092 Marking et al. Oct 2001 B1
6311962 Marking Nov 2001 B1
6318525 Vignocchi et al. Nov 2001 B1
6321888 Reybrouck Nov 2001 B1
6322468 Wing et al. Nov 2001 B1
6343807 Rathbun Feb 2002 B1
6360857 Fox et al. Mar 2002 B1
6371262 Katou et al. Apr 2002 B1
6371267 Kao et al. Apr 2002 B1
6378885 Ellsworth et al. Apr 2002 B1
6389341 Davis May 2002 B1
6390747 Commins May 2002 B1
6394238 Rogala May 2002 B1
6401883 Nyce et al. Jun 2002 B1
6415895 Marking et al. Jul 2002 B2
6418360 Spivey et al. Jul 2002 B1
6427812 Crawley et al. Aug 2002 B2
6434460 Uchino et al. Aug 2002 B1
6446771 Sintorn et al. Sep 2002 B1
6467593 Corradini Oct 2002 B1
6474454 Matsumoto et al. Nov 2002 B2
6474753 Rieth et al. Nov 2002 B1
6501554 Hackney et al. Dec 2002 B1
6502837 Hamilton et al. Jan 2003 B1
6510929 Gordaninejad et al. Jan 2003 B1
6520297 Lumpkin et al. Feb 2003 B1
6527093 Oliver et al. Mar 2003 B2
6592136 Becker et al. Jul 2003 B2
6619615 Mayr et al. Sep 2003 B1
6648109 Farr et al. Nov 2003 B2
6659240 Dernebo Dec 2003 B2
6659241 Sendrea Dec 2003 B2
6672687 Nishio Jan 2004 B2
6732033 Laplante et al. May 2004 B2
6755113 Shih Jun 2004 B2
6782980 Nakadate Aug 2004 B2
6817454 Nezu et al. Nov 2004 B2
6840257 Dario et al. Jan 2005 B2
6857625 Löser et al. Feb 2005 B2
6863291 Miyoshi Mar 2005 B2
6905203 Kremers et al. Jun 2005 B2
6920951 Song et al. Jul 2005 B2
6923853 Kremers et al. Aug 2005 B2
6935157 Miller Aug 2005 B2
6952060 Goldner et al. Oct 2005 B2
6959921 Rose Nov 2005 B2
6966412 Braswell et al. Nov 2005 B2
6978871 Holiviers Dec 2005 B2
6978872 Turner Dec 2005 B2
6991076 McAndrews Jan 2006 B2
7025367 McKinnon et al. Apr 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7128192 Fox Oct 2006 B2
7135794 Kühnel Nov 2006 B2
7147207 Jordan et al. Dec 2006 B2
7163222 Becker et al. Jan 2007 B2
7208845 Schaefer et al. Apr 2007 B2
7234575 Anderfaas et al. Jun 2007 B2
7234680 Hull et al. Jun 2007 B2
7243763 Carlson Jul 2007 B2
7270221 McAndrews Sep 2007 B2
7287760 Quick et al. Oct 2007 B1
7293764 Fang Nov 2007 B2
7299112 Laplante et al. Nov 2007 B2
7316406 Kimura et al. Jan 2008 B2
7325660 Norgaard et al. Feb 2008 B2
7363129 Barnicle et al. Apr 2008 B1
7374028 Fox May 2008 B2
7397355 Tracy Jul 2008 B2
7413062 Vandewal Aug 2008 B2
7413063 Davis Aug 2008 B1
7422092 Hitchcock et al. Sep 2008 B2
7441638 Hanawa Oct 2008 B2
7469910 Münster et al. Dec 2008 B2
7484603 Fox Feb 2009 B2
7490705 Fox Feb 2009 B2
7523617 Colpitts et al. Apr 2009 B2
7569952 Bono et al. Aug 2009 B1
7581743 Graney et al. Sep 2009 B2
7591352 Hanawa Sep 2009 B2
7600616 Anderfaas et al. Oct 2009 B2
7628259 Norgaard et al. Dec 2009 B2
7631882 Hirao et al. Dec 2009 B2
7654369 Murray et al. Feb 2010 B2
7673936 Hsu et al. Mar 2010 B2
7684911 Seifert et al. Mar 2010 B2
7694785 Nakadate Apr 2010 B2
7694987 McAndrews Apr 2010 B2
7722056 Inoue et al. May 2010 B2
7722069 Shirai May 2010 B2
7726042 Meschan Jun 2010 B2
7730906 Kleinert et al. Jun 2010 B2
7770701 Davis Aug 2010 B1
7779974 Timoney et al. Aug 2010 B2
7795711 Sauciuc et al. Sep 2010 B2
7837213 Colegrove et al. Nov 2010 B2
7857325 Copsey et al. Dec 2010 B2
7909348 Klieber et al. Mar 2011 B2
7931132 Braun Apr 2011 B2
7946163 Gartner May 2011 B2
8016349 Mouri et al. Sep 2011 B2
8056392 Ryan et al. Nov 2011 B2
8087676 McIntyre Jan 2012 B2
8091910 Hara et al. Jan 2012 B2
8104591 Barefoot et al. Jan 2012 B2
8121785 Swisher et al. Feb 2012 B2
8127900 Inoue Mar 2012 B2
8136877 Walsh et al. Mar 2012 B2
8151952 Lenz et al. Apr 2012 B2
8191964 Hsu et al. Jun 2012 B2
8210106 Tai et al. Jul 2012 B2
8210330 Vandewal Jul 2012 B2
8256587 Bakke et al. Sep 2012 B2
8262058 Kot Sep 2012 B2
8262062 Kamo et al. Sep 2012 B2
8262100 Thomas Sep 2012 B2
8286982 Plantet et al. Oct 2012 B2
8291889 Shafer et al. Oct 2012 B2
8292274 Adoline et al. Oct 2012 B2
8307965 Föster et al. Nov 2012 B2
8308124 Hsu Nov 2012 B2
8317261 Walsh et al. Nov 2012 B2
8336683 McAndrews et al. Dec 2012 B2
8364389 Dorogusker et al. Jan 2013 B2
8393446 Haugen Mar 2013 B2
8413773 Anderfaas et al. Apr 2013 B2
8423244 Proemm et al. Apr 2013 B2
8458080 Shirai Jun 2013 B2
8550551 Shirai Oct 2013 B2
8556048 Maeda et al. Oct 2013 B2
8556049 Jee Oct 2013 B2
8596663 Shirai et al. Dec 2013 B2
8627932 Marking Jan 2014 B2
8641073 Lee et al. Feb 2014 B2
8651251 Preukschat Feb 2014 B2
8655548 Ichida et al. Feb 2014 B2
8744699 Yamaguchi et al. Jun 2014 B2
8752682 Park et al. Jun 2014 B2
8770357 Sims et al. Jul 2014 B2
8781680 Ichida et al. Jul 2014 B2
8781690 Hara et al. Jul 2014 B2
8814109 Calendrille et al. Aug 2014 B2
8833786 Camp et al. Sep 2014 B2
8838335 Bass et al. Sep 2014 B2
8857580 Marking Oct 2014 B2
8888115 Chubbuck et al. Nov 2014 B2
8935036 Christensen et al. Jan 2015 B1
8950771 Felsl et al. Feb 2015 B2
8955653 Marking Feb 2015 B2
8967343 Battlogg et al. Mar 2015 B2
8991571 Murakami Mar 2015 B2
9033122 Ericksen et al. May 2015 B2
9038791 Marking May 2015 B2
9047778 Cazanas et al. Jun 2015 B1
9073592 Hsu Jul 2015 B2
9120362 Marking Sep 2015 B2
9126647 Kuo Sep 2015 B2
9140325 Cox et al. Sep 2015 B2
9157523 Miki et al. Oct 2015 B2
9194456 Laird et al. Nov 2015 B2
9199690 Watarai Dec 2015 B2
9239090 Marking Jan 2016 B2
9278598 Galasso et al. Mar 2016 B2
9353818 Marking May 2016 B2
9366307 Marking Jun 2016 B2
9422018 Pelot et al. Aug 2016 B2
9452654 Ericksen Sep 2016 B2
9550405 Marking et al. Jan 2017 B2
9556925 Marking Jan 2017 B2
9616728 Marking Apr 2017 B2
9663181 Ericksen et al. May 2017 B2
9682604 Cox et al. Jun 2017 B2
9975598 Bender May 2018 B2
10036443 Galasso et al. Jul 2018 B2
10040329 Ericksen et al. Aug 2018 B2
10072724 Haugen et al. Sep 2018 B2
10086670 Galasso et al. Oct 2018 B2
10089868 Hayward Oct 2018 B1
10094443 Marking Oct 2018 B2
10330171 Cox et al. Jun 2019 B2
10336148 Ericksen et al. Jul 2019 B2
10336149 Ericksen et al. Jul 2019 B2
20010017334 Vincent Aug 2001 A1
20010042663 Marking et al. Nov 2001 A1
20020000352 Matsumoto et al. Jan 2002 A1
20020032508 Uchino et al. Mar 2002 A1
20020050518 Roustaei May 2002 A1
20020063469 Nishio May 2002 A1
20020089107 Koh Jul 2002 A1
20020121416 Katayama et al. Sep 2002 A1
20020130000 Lisenker et al. Sep 2002 A1
20020130003 Lisenker et al. Sep 2002 A1
20020185581 Trask et al. Dec 2002 A1
20030001346 Hamilton et al. Jan 2003 A1
20030001358 Becker et al. Jan 2003 A1
20030034697 Goldner et al. Feb 2003 A1
20030051954 Sendrea Mar 2003 A1
20030065430 Lu et al. Apr 2003 A1
20030075403 Dernebo Apr 2003 A1
20030103651 Novak Jun 2003 A1
20030160369 Laplante et al. Aug 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030216845 Williston Nov 2003 A1
20040017455 Kremers et al. Jan 2004 A1
20040021754 Kremers et al. Feb 2004 A1
20040075350 Kuhnel Apr 2004 A1
20040099312 Boyer et al. May 2004 A1
20040172178 Takeda et al. Sep 2004 A1
20040208687 Sicz et al. Oct 2004 A1
20040220712 Takeda et al. Nov 2004 A1
20040222056 Fox Nov 2004 A1
20040256778 Verriet Dec 2004 A1
20050077131 Russell Apr 2005 A1
20050098401 Hamilton et al. May 2005 A1
20050110229 Kimura et al. May 2005 A1
20050121269 Namuduri Jun 2005 A1
20050173849 Vandewal Aug 2005 A1
20050195094 White Sep 2005 A1
20050199455 Browne et al. Sep 2005 A1
20060064223 Voss Mar 2006 A1
20060065496 Fox Mar 2006 A1
20060066074 Turner et al. Mar 2006 A1
20060081431 Breese et al. Apr 2006 A1
20060096817 Norgaard et al. May 2006 A1
20060113834 Hanawa Jun 2006 A1
20060124414 Hanawa Jun 2006 A1
20060137934 Kurth Jun 2006 A1
20060163551 Coenen et al. Jul 2006 A1
20060163787 Munster et al. Jul 2006 A1
20060175792 Sicz et al. Aug 2006 A1
20060213082 Meschan Sep 2006 A1
20060219503 Kim Oct 2006 A1
20060225976 Nakadate Oct 2006 A1
20060237272 Huang Oct 2006 A1
20060289258 Fox Dec 2006 A1
20070007743 Becker et al. Jan 2007 A1
20070008096 Tracy Jan 2007 A1
20070021885 Soehren Jan 2007 A1
20070034464 Barefoot Feb 2007 A1
20070039790 Timoney et al. Feb 2007 A1
20070051573 Norgaard et al. Mar 2007 A1
20070088475 Nordgren et al. Apr 2007 A1
20070090518 Sauciuc et al. Apr 2007 A1
20070119669 Anderfaas et al. May 2007 A1
20070170688 Watson Jul 2007 A1
20080006494 Vandewal Jan 2008 A1
20080018065 Hirao et al. Jan 2008 A1
20080029730 Kamo et al. Feb 2008 A1
20080041677 Namuduri Feb 2008 A1
20080059025 Furuichi et al. Mar 2008 A1
20080067019 Jensen et al. Mar 2008 A1
20080093820 McAndrews Apr 2008 A1
20080099968 Schroeder May 2008 A1
20080116622 Fox May 2008 A1
20080119330 Chiang et al. May 2008 A1
20080185244 Maeda et al. Aug 2008 A1
20080250844 Gartner Oct 2008 A1
20080303320 Schranz et al. Dec 2008 A1
20080314706 Lun et al. Dec 2008 A1
20090001684 McAndrews et al. Jan 2009 A1
20090020382 Van Weelden et al. Jan 2009 A1
20090071773 Lun Mar 2009 A1
20090121398 Inoue May 2009 A1
20090138157 Hagglund et al. May 2009 A1
20090171532 Ryan et al. Jul 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200126 Kondo et al. Aug 2009 A1
20090236807 Wootten et al. Sep 2009 A1
20090261542 McIntyre Oct 2009 A1
20090277736 McAndrews et al. Nov 2009 A1
20090288924 Murray et al. Nov 2009 A1
20090294231 Carlson et al. Dec 2009 A1
20090302558 Shirai Dec 2009 A1
20090324327 McAndrews et al. Dec 2009 A1
20100010709 Song Jan 2010 A1
20100032254 Anderfaas et al. Feb 2010 A1
20100044975 Yablon et al. Feb 2010 A1
20100059964 Morris Mar 2010 A1
20100066051 Haugen Mar 2010 A1
20100109277 Furrer May 2010 A1
20100170760 Marking Jul 2010 A1
20100207351 Klieber et al. Aug 2010 A1
20100244340 Wootten et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100276238 Crasset Nov 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100308628 Hsu et al. Dec 2010 A1
20100314917 Hsieh et al. Dec 2010 A1
20100327542 Hara et al. Dec 2010 A1
20110086686 Avent et al. Apr 2011 A1
20110095507 Plantet et al. Apr 2011 A1
20110097139 Hsu et al. Apr 2011 A1
20110109060 Earle et al. May 2011 A1
20110127706 Sims et al. Jun 2011 A1
20110174582 Wootten et al. Jul 2011 A1
20110202236 Galasso et al. Aug 2011 A1
20110204201 Kodama et al. Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110257848 Shirai Oct 2011 A1
20110284333 Krog et al. Nov 2011 A1
20110315494 Marking Dec 2011 A1
20120006949 Laird et al. Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120018264 King Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120080279 Galasso et al. Apr 2012 A1
20120136537 Galasso et al. May 2012 A1
20120181126 De Kock Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120228906 McAndrews et al. Sep 2012 A1
20120253599 Shirai Oct 2012 A1
20120253600 Ichida et al. Oct 2012 A1
20120274043 Lee et al. Nov 2012 A1
20120305350 Ericksen et al. Dec 2012 A1
20120312648 Yu et al. Dec 2012 A1
20130001030 Goldasz et al. Jan 2013 A1
20130037361 Park et al. Feb 2013 A1
20130090195 Yamaguchi et al. Apr 2013 A1
20130119634 Camp et al. May 2013 A1
20130144489 Galasso et al. Jun 2013 A1
20130168195 Park et al. Jul 2013 A1
20130292218 Ericksen et al. Nov 2013 A1
20130333993 Yu Dec 2013 A1
20140008160 Marking et al. Jan 2014 A1
20140027219 Marking et al. Jan 2014 A1
20140048365 Kim Feb 2014 A1
20140061419 Wehage et al. Mar 2014 A1
20150073656 Takamoto et al. Mar 2015 A1
20150081171 Ericksen Mar 2015 A1
20150175236 Walthert et al. Jun 2015 A1
20150179062 Ralston et al. Jun 2015 A1
20150197308 Butora et al. Jul 2015 A1
20160025178 Kamakura et al. Jan 2016 A1
20160031506 Lloyd et al. Feb 2016 A1
20160076617 Marking Mar 2016 A1
20160153515 Ebersbach et al. Jun 2016 A1
20160153516 Marking Jun 2016 A1
20160185178 Galasso et al. Jun 2016 A1
20160265615 Marking Sep 2016 A1
20160290431 Marking Oct 2016 A1
20160355226 Pelot et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170136843 Marking May 2017 A1
20170184174 Marking Jun 2017 A1
20170259876 Ericksen et al. Sep 2017 A1
20180010666 Marking Jan 2018 A1
20180326808 Ericksen et al. Nov 2018 A1
20180328442 Galasso et al. Nov 2018 A1
20180328446 Ericksen et al. Nov 2018 A1
20180334007 Ericksen et al. Nov 2018 A1
20180334008 Ericksen et al. Nov 2018 A1
20180335102 Haugen Nov 2018 A1
20180339565 Ericksen et al. Nov 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180339567 Ericksen et al. Nov 2018 A1
20180355946 Ericksen et al. Dec 2018 A1
20190030975 Galasso et al. Jan 2019 A1
20190032745 Marking Jan 2019 A1
20190176557 Marking et al. Jun 2019 A1
20190184782 Shaw et al. Jun 2019 A1
20190203798 Cox et al. Jul 2019 A1
Foreign Referenced Citations (47)
Number Date Country
3613386 Oct 1986 DE
3709447 Oct 1988 DE
3711442 Oct 1988 DE
3738048 May 1989 DE
3924166 Feb 1991 DE
4029090 Mar 1992 DE
4406918 Sep 1994 DE
10326675 Dec 2004 DE
202010012738 Dec 2010 DE
207409 Jan 1987 EP
304801 Mar 1989 EP
0403803 Dec 1990 EP
0735280 Oct 1996 EP
1241087 Sep 2002 EP
1355209 Oct 2003 EP
1623856 Feb 2006 EP
1757473 Feb 2007 EP
1825220 Aug 2007 EP
2103512 Sep 2009 EP
2116739 Nov 2009 EP
2189191 May 2010 EP
2248691 Nov 2010 EP
2357098 Aug 2011 EP
2410203 Jan 2012 EP
2479095 Jul 2012 EP
2495472 Sep 2012 EP
2357098 Oct 2014 EP
2848582 Mar 2015 EP
1343760 Nov 1963 FR
2529002 Dec 1983 FR
2289111 Nov 1995 GB
57173632 Oct 1982 JP
57182506 Nov 1982 JP
01106721 Apr 1989 JP
H0193637 Apr 1989 JP
H03113139 May 1991 JP
04203540 Jul 1992 JP
05149364 Jun 1993 JP
H084818 Jan 1996 JP
2005119549 May 2005 JP
2007302211 Nov 2007 JP
20070076226 Jul 2007 KR
20100041679 Apr 2010 KR
2469224 Dec 2012 RU
9840231 Sep 1998 WO
9906231 Feb 1999 WO
0027658 May 2000 WO
Non-Patent Literature Citations (39)
Entry
U.S. Appl. No. 61/175,422, filed May 4, 2009, Mario Galasso et al., 17 Pages.
U.S. Appl. No. 61/302,070, filed Feb. 5, 2010, Mario Galasso et al., 39 Pages.
“Basis for Claims Filed Jan. 23, 2015”, European Patent Application No. 14189773.6, 2 Pages.
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages.
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages.
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, dated Dec. 13, 2018, 49 Pages.
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (Aug. 28, 2018))”.
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7 Pages.
“European Search Report for European Application No. 10187320, 12 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (Aug. 10, 2012))”.
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (Dec. 12, 2017)”.
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (Jan. 8, 2018))”.
“European Search Report for European Application No. 17188022 , 9 pages, dated Feb. 1, 2018 (Feb. 1, 2018))”.
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991.
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207.
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207.
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages.
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages.
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128.
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages.
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223.
Puhn, “How to Make Your Car Handle”, HPBooks, 1981, 7 Pages.
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39.
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics, vol. 37, No. 1, 2002, 3-28.
Electronic Translation of DE3709447A1.
English language abstract for EP 0207409 (no date).
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages.
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages.
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2.
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages.
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages.
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages.
European Search Report for European Application No. 19206334.5, 6 pages, dated May 12, 2020 (May 12, 2020).
European Search Report for European Application No. 19212356.0, 8 pages, dated May 7, 2020 (May 7, 2020).
Machine translation DE3613386; Oct. 1986.
Machine translation EP 0403803; Dec. 1990.
Machine translation KR20100041679; Apr. 2010.
Related Publications (1)
Number Date Country
20170291466 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62320368 Apr 2016 US