Electronic controlled handles

Abstract
In accordance with an embodiment, electronic control is provided for the locking function of Lift-Handle and T-Handle products, while maintaining desirable mechanical latching mechanism functions and operations.
Description
TECHNICAL FIELD OF THE DISCLOSURE

The present disclosure relates to latching and locking handles and, more particularly, relates to electronic control of the locking function of Lift-Handle and T-Handle products.


BACKGROUND OF THE DISCLOSURE

In the vending industry and other industries where product security and secured access are needed, latching and locking handles are commonly used. Two common configurations are the “Lift-Handle” style and the “T-Handle” style. Both the Lift-Handle and T-Handle products comprise a latch mechanism controlled by the handle for manually latching and unlatching an enclosure such as a vending machine or otherwise. Typically these products are mounted to the door of the enclosure, and interface to a slot or receptacle in a cabinet of the enclosure.


The latching mechanism may be any of a variety of mechanisms, such as a threaded bolt that engages into a receptacle, or one or more latch bars or bolts for extending into the cabinet. In the case of the Lift-Handle style latch, movement of the handle from the seated position to an extended or raised position serves to unlatch the door from the cabinet. In the case of the T-Handle style latch, turning of the handle from the vertical seated position to a horizontal position or unscrewing the threaded latch from the receptacle will serve to unlatch the door from the cabinet.


In addition to the latch mechanism, both the Lift-Handle and T-Handle style closures typically comprise a lock-plug for locking and unlocking the handle from movement. Lock plugs are typically controlled by mechanical keys to allow operation of the handle to access the cabinet. However, it is appreciated in the industry that lock plugs are vulnerable to vandalism and theft. As an additional problem related to such plugs, mechanical keys are subject to being lost, copied and stolen.


One solution to the foregoing problems is to replace the above described Lift-Handle and T-Handle products with motorized latch and lock products. Exemplary replacement products are described, for example, in U.S. Pat. No. 6,581,986 entitled “Bayonet Locking System and Method for Vending Machines and the Like.” However, there is a further need to provide electronic control of the locking function of Lift-Handle and T-Handle products while maintaining the above-described mechanical latching mechanism function/operation to facilitate retrofit of improved closure systems to existing common cabinets in the industry.


SUMMARY OF THE DISCLOSURE

The present invention will offer electronic control of the locking function of Lift-Handle and T-Handle products, but maintain the above described mechanical latching mechanism function/operation. In accordance with one aspect of the present disclosure, an electronic control lift-handle product is provided having a handle, a housing, a slider bolt, slider bolt pin, slider bolt guide, and one or more springs 4. The product further includes a CAM, motor, circuit board controller, eye, handle sensor, one or more CAM sensors, and an IRDA infrared transceiver. The unit is configured such that the handle seats in the housing when the unit is in the latched or locked position, the motor serves to rotate the CAM by 360 degrees to change the state of handle from locked to unlocked to latched, and the slider bolt seats in the housing and is biased downward to the latched position by the one or more springs, and wherein the CAM maintains the slider bolt in the locked position if there is an attempt to push the slider bolt up to the unlocked position when the unit is locked.


In another embodiment, an electronic control T-handle product is provided having a handle, a housing, latch hardware, a MCU and CPU control electronics. The handle resides inside of the housing, and the MCU is controlled by the CPU to latch, lock and unlock the handle within the housing. The MCU consists of a slider bolt, a spring, a CAM, a motor, a mount, a cover, a handle sensor, and one or more CAM sensors. The handle is locked into the housing by the slider bolt protruding into a handle slot when the unit is latched or locked. The motor serves to rotate the CAM through 360 degrees to change the state of the handle from locked, to unlocked, to latched, and the CAM controls the slider bolt to maintain a locked position if there is an attempt to push the bolt toward the upward unlocked position when the unit is locked.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 2A is a front perspective drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 2B is a back perspective drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 3 is a plan view of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 4A is a front perspective drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 4B is a back perspective drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 5 is a plan view drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 6 is a plan view drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 7 is a plan view drawing of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 8 is a plan view of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 9 is a flow chart of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 10 is a flow chart of an aspect of an electronic-control Lift-Handle in accordance with an embodiment of the invention;



FIG. 11 is a flow chart of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 12 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 13 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 14 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 15 is a plan view drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIGS. 16a, 16b and 16c are plan view drawings of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 17 is a flow chart of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 18 is a flow chart of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 19 is a flow chart of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 20 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 21 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 22 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 23 is a plan view drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 24 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 25 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;



FIG. 26 is a perspective drawing of an aspect of an electronic-control T-Handle in accordance with an embodiment of the invention;





While the present disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof will be shown and described below in detail. It should be understood, however, that there is no intention to be limited to the specific embodiments disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents that fall within the spirit and scope of the present disclosure.


DETAILED DESCRIPTION OF THE DISCLOSURE

While this disclosure describes certain lock structures, it should be appreciated that the electronic lock components described herein are not specific to the Lift-Handle and T-Handle products, but rather can be implemented directly, or modified, to control almost any handle-controlled latch/lock mechanism in the industry. This disclosure will first discuss an exemplary embodiment of a lift handle system, and then will move on to discuss an exemplary embodiment of a T-handle system.


Regarding the Electronic Control Lift-Handle, this product is configured for mounting to the door of a cabinet, and attaches to latch hardware to latch the door to the cabinet. The product consists of a handle 1, housing 2, slider bolt 3, springs 4, CAM 5, motor 6, circuit board controller 7, cover 8, eye 9, handle sensor 10, CAM sensors 11, IRDA infrared transceiver 12, Slider bolt pin 13, Slider bolt guide 70, Housing slot 71.


The handle 1 seats in the housing 2 when the unit is in the latched or locked position. The eye 9 attaches to the handle 1, and is held in place by the slider bolt 3 when the unit is latched or locked. The motor 6 serves to rotate CAM 5 by 360 degrees to change the state of handle 1 from locked to unlocked to latched.


The slider bolt 3 seats in the housing 2 and is biased downward to the latched position (See FIG. 7) by springs 4. The slider bolt guide 70 fits into housing slot 71. The guide 70 is centered on slider bolt 3, and is configured to slide up and down in slot 71 to keep the slider bolt 3 aligned in the housing 2, e.g., to keep it from tilting and from jamming as the slider bolt 3 slides or moves.


The CAM 5 controls the slider bolt 3 by being capable of keeping the slider bolt 3 in the locked position by surface 14 interfering with slider bolt pin 13 if there is an attempt to push the slider bolt 3 up to the unlocked position when the unit is locked (see FIG. 5). The CAM 5 controls the slider bolt 3 by applying a force from surface 15 to the slider bolt along surface 16 when the motor 6 is rotated and when the unit is unlocked (see FIG. 6).


The electronic controller 7 controls the motor 6 to rotate the CAM 5 to the three positions noted above. The position of the CAM 5 is controlled and sensed by two optical sensors 11 sensing the position of CAM 5 in the illustrated example. A handle position sensor 10 is also utilized in an embodiment. An IRDA infrared transceiver 12 is included for detecting an electronic key. The control of the unit is described in the flow charts of FIGS. 9, 10, and 11.


In the flow chart of FIG. 9, the unit is initially locked as in the configuration shown in FIG. 5. If the controller IRDA infrared transceiver 12 detects the electronic key, cam 5 is rotated and applies an upward force to sliding bolt 3 along surface 16 to move the slider bolt 3 against the downward spring bias force and lift bolt 3 to the unlocked position reflected in FIG. 6. Sensors 11 measure position of CAM 5 and provide a signal to the controller for determining proper control of the motor. Once in the unlocked position, the eye 9 attached to the handle 1 is released from interference by slider bolt 3 and handle 1 is capable of being lifted from housing 2 and optionally rotated.


As shown in the flow chart of FIG. 10, the controller 7 senses the position of the handle 1, and after the handle 1 is unlocked and the user proceeds to lift (and optionally rotate) the handle 1 to unlatch the door from the cabinet, the controller 7 proceeds to energize the motor 6 to move the CAM 5 to the latched position shown in FIG. 7. In the latched position, the slider bolt 3 is biased to the position shown in FIG. 7 by one or more springs 4.


As described in the flowchart of FIG. 11, when the user is finished accessing the cabinet, the handle 1 is pushed into the housing 2, and the eye 9 pushes against the slider bolt 3 such that the slider bolt 3 is forced by the eye 9 upward against the bias of the springs 4 so as to lift up and allow the eye 9 to pass by the slider bolt 3. Once the eye 9 passes the slider bolt 3, the springs 4 push the slider bolt 3 back to the latched position, capturing the eye 9. The controller 7 senses the handle 1 in the housing 2 via sensor 10, then first waits for the eye 9 to pass under the slider bolt 3 as shown in FIG. 8 before proceeding to rotate the CAM 5 to the locked position shown in FIG. 5.


Referring still to FIG. 5, if an attempt is made to manually lift the slider bolt 3 upward, the CAM 5 interferes at surface 14 with slide bolt pin 13 to maintain the slider bolt 3 in the locked position. With the CAM 5 interfering with the slider bolt pin 13, the unit is less vulnerable to a thief or vandal attempting to defeat the lock by using either a tool or a vibration force to move the slider bolt 3 upward against the weaker downward force of springs 4.


As can be seen from the above, the disclosed electronic control lift-handle product is an effective solution that is able to be mounted to the door of a cabinet, and to secure the door in a manner that overcomes some of the problems found in prior systems. In addition to the electronic control lift-handle product, the novel electronic control t-handle product, while differently configured, is substantially as effective at providing a secure closure in a manner that overcomes problems in prior designs.


The electronic control t-handle product consists of a handle 51, a housing 52, latch hardware 65, a MCU 64 and CPU control electronics (not shown). The housing 52 is mounted to the door of a cabinet, and the latch hardware 65 is attached to a latch device that will operate to latch and unlatch the door to the cabinet. The MCU 64 attaches to the body of the housing 52, and the handle 51 resides inside of the housing 51. The MCU 64 is controlled by the CPU to latch, lock and unlock the handle 51 within the housing 52. When the MCU 64 unlocks the handle 51, the handle pops-out of the housing 52 for the user to operate. The user operates the handle 51 by turning it ¼ turn (90 degrees) clock-wise to operate latch hardware 65. When finished, the user closes the cabinet door, turns the handle 51 ¼ turn in the counter-clockwise direction to re-latch the door to the cabinet. Lastly, the user pushes the handle 51 in so as to lock the handle 51 into the housing 52.


In the illustrated embodiment, the MCU 64 consists of a slider bolt 53, a spring 54, a CAM 55, a motor 56, a mount 57, a cover 58, a handle sensor 60, and one or more CAM sensors 61. The handle 51 seats in the housing 52 when the unit is in the latched or locked position, and is locked into the housing 52 by the slider bolt 53 protruding into handle slot 59 when the unit is latched or locked.


The motor 56 serves to rotate the CAM 55 through 360 degrees to change the state of the handle 51 from locked, to unlocked, to latched. The slider bolt 53 is biased to be latched in the downward position into slot 59 by spring 54 as shown in FIG. 14. The CAM 5 controls the slider bolt 53 by applying a force from surface 66 to the slider bolt 53 surface 67 if there is an attempt to push the bolt toward the upward unlocked position when the unit is locked as shown in FIGS. 15 and 16A. The CAM 5 further controls the slider bolt 53 by applying a force from surface 66 to the slider bolt along surface 69 when the motor 56 is rotated and when the unit is unlocked as shown in FIG. 16B.


The electronic controller CPU controls motor 56 to rotate CAM 55 to three positions. The position to which CAM 55 is controlled or rotated is sensed by two optical sensors 61 sensing the position of CAM 55. A handle position sensor 60 is also utilized. An IRDA infrared transceiver (not shown) is included for detecting an electronic key. The control of the unit is described in the flow charts of FIGS. 17, 18, and 19.


In the flow chart of FIG. 17, the unit is initially locked as shown in FIGS. 15 and 16A. If the controller IRDA infrared transceiver detects the electronic key, the cam 55 is rotated and applies an upward force to the sliding bolt 53 along surface 69 to move the slider bolt 53 against the downward spring bias force and lift bolt 53 to the unlocked position as shown in FIG. 16B. The sensors 61 measure the position of the CAM 55 and provide a signal to the controller for determining proper control of the motor. Once the slider bolt 53 is in the unlocked position, the handle 51 is released from interference by the slider bolt 53 and is released from the housing 52 and rotated by the user.


In the flow chart of FIG. 18, the position sensor 60 and the CPU controller sense the position of the handle 51, and after the handle 51 is unlocked and the user proceeds to rotate the handle 51 to unlatch the door from the cabinet, the controller proceeds to energize the motor 56 to move the CAM 55 to the latched position in FIG. 16C. In the latched position, the slider bolt 3 is biased by the spring 54 to the position shown in FIG. 16C.


As described in the flowchart of FIG. 19, when the user is finished accessing the cabinet, the handle 51 is pushed into housing 52 when causing a surface of the handle 51 to push against the slider bolt 53, such that the slider bolt 53 is forced upward against the bias of spring 54 so as to lift upward to allow the handle 51 to protrude into the housing 52. Once the handle slot 59 passes the slider bolt 53, the spring 4 will push the slider bolt 53 back to the latched position to hold the handle 51 into the housing 52. The controller, sensing via sensor 60 that the handle 51 is in the housing 52, will first wait for slot 59 to pass under the slider bolt 53 and will then rotate the CAM 55 to the locked position as shown in FIG. 16A.


In the configuration illustrated in FIGS. 15 and 16A, the CAM 55 will apply a force at surface 66 to the slider bolt 53 at surface 67 to maintain the slider bolt 53 in the locked position in the event that an attempt is made to manually lift the slider bolt 53 upward. Through the ability of the CAM 55 to hold the slider bolt 53 in the locked position, the unit is less vulnerable to a thief or vandal attempting to defeat the lock using a tool or a vibration force to move slider bolt 53 upward against the weaker downward force of spring 54.



FIG. 20 is drawing of an alternate embodiment of the MCU with a sensor 80 for detecting the slider bolt 81. By detecting the slider bolt, the controller can identify the position of the handle, whether it is unlocked and extended with the slider in the retracted position or locked and in the extended position. This sensor can be used in conjunction with or in place of handle detector switch 60.


Similarly, the drawing of FIG. 21 shows an alternate optional mounting position of the MCU on the t-handle housing at the 3:00 position. Alternate mounting positions will be useful in retrofit applications whereby a vending machine may have other accessories mounted around the T-handle, and the installer requires the flexibility of mounting the MCU at either the 12:00 (as in FIG. 13), 3:00 (FIG. 21), 6:00 or 9:00 positions, i.e., whichever position is unobstructed and allows the position of the MCU to not interfere with pre-existing accessory equipment in the machine.



FIGS. 22-26 show an alternative design 82 of the MCU, whereby the MCU will mount to housing 83 which was pre-installed in vending machines. The pre-installed housing would normally house a standard t-handle and a lock plug/core operated by a mechanical key. In order to retrofit the invention to a vending machine and to avoid the labor and material to replace the existing housing, the pre-installed housing will remain in the machine. MCU 82 is similar to MCU 64 except for the way it slides onto and fastens to pre-existing housing 83.


MCU 82 has legs 86 that will extend along the vertical surfaces of housing 83, and the rear view of MCU 82 in FIG. 23 shows the MCU surfaces that could potentially touch housing 83 during installation, such as horizontal edges 87, 88, 89, 94, 95 and vertical surfaces 90, 91, 92, and 93 that will capture housing 83 at least partially along multiple outer surfaces of housing 83. Fastener 96 is used to fasten the MCU to the housing once seated.


In this embodiment, the installer would apply the MCU 82 by sliding the MCU 82 on the pre-existing housing at for example the 12:00 position as shown in FIG. 24. MCU 82 slides on housing 83 and seats until the rear end of MCU 82 is flush with the rear end of housing 83 and fastened by fastener 96 as shown in FIG. 25. The installer would fasten the MCU to the housing by turning fastener 96 thereby fastening the MCU to the housing. The MCU 82 can be fastened by fastener 96 with a tool at the rear of the housing as shown, and/or the MCU can also be fastened by a fastener on the inside of the housing with a tool that travels inside the housing to reach the fastener.


It will be appreciated that the MCU 82 can also be installed at the 3:00, 6:00 or 9:00 positions; position 3:00 is shown by way of example in FIG. 26. Again, the fastener 96 can be operated by a tool inserted into the head of the fastener, such as a flathead screw, or the fastener head can be inside the MCU 82 and operated by inserting the tool into the front of the housing to operate the fastener head after the MCU is seated on the housing.


While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.

Claims
  • 1. A wireless lock assembly for selectively locking and unlocking a handle positionable in a housing, the assembly comprising: a locking element, selectively positionable between a lowered position and a raised position, for selectively locking the handle in the housing; andan electronically controlled locking mechanism, selectively positionable in a set lock position, a set unlock position and a set latch permitting position, for selectively controlling movement of the locking element;wherein the locking mechanism includes a blocking portion to prevent movement of the locking element away from the lowered position toward the raised position when the locking mechanism is in its lock position;wherein the locking element is biased to the lowered position by a biasing element providing a biasing force when the locking mechanism is in the set latch permitting position, and wherein the locking mechanism while in the set latch permitting position is adapted to permit movement of the locking element from the lowered position against the biasing force.
  • 2. A wireless lock assembly for selectively locking and unlocking a handle positionable in a housing, the assembly comprising: a locking element, selectively positionable between a lowered position and a raised position, for selectively locking the handle in the housing;an electronically controlled locking mechanism, selectively positionable in a set lock position, a set unlock position and a set latch permitting position, for selectively controlling movement of the locking element;wherein the locking mechanism includes a blocking portion to prevent movement of the locking element away from the lowered position toward the raised position when the locking mechanism is in its lock position; anda wireless signal receiver circuit for controlling the locking mechanism.
  • 3. The wireless lock assembly of claim 2, further comprising at least one sensor for sensing the position of the handle.
  • 4. The wireless lock assembly of claim 2, further comprising at least one sensor for sensing the position of the locking mechanism.
  • 5. The wireless lock assembly of claim 2, wherein the locking mechanism is a motorized cam.
  • 6. A wireless lock assembly for selectively locking and unlocking a handle positionable in a housing, the assembly comprising: a locking element, selectively positionable between a handle interference position and a handle non-interference position, for selectively locking the handle in the housing; andan electronically controlled locking mechanism, selectively positionable in a first set position, a second set position and a third set position, for selectively controlling movement of the locking element;wherein when the locking mechanism is in the first set position, the locking element is in the handle interference position in engagement with the handle, and the locking mechanism prevents movement of the locking element out of the handle interference position toward the handle non-interference position via a blocking portion of the locking mechanism;wherein when the locking mechanism is in the second set position, the locking element is in the handle non-interference position out of engagement with the handle via a lifting portion of the locking mechanism;wherein when the locking mechanism is in the third set position, the locking element is biased to the handle interference position by a biasing element providing a biasing force, and the locking mechanism is adapted to permit movement of the locking element out of the handle interference position against the biasing force; anda wireless signal receiver circuit for controlling the locking mechanism.
  • 7. The wireless lock assembly of claim 6, further comprising at least one sensor for sensing the position of the handle.
  • 8. The wireless lock assembly of claim 6, further comprising at least one sensor for sensing the position of the locking mechanism.
  • 9. The wireless lock assembly of claim 6, wherein the locking mechanism is a motorized cam.
  • 10. An electronically controlled lock assembly for selectively locking and unlocking a handle having a latch operatively connected thereto, the assembly comprising: a locking element operatively mounted adjacent to the handle and being selectively engageable with the handle so as to selectively lock the latch, wherein the locking element is selectively positionable between a biased and moveable position, an interfering and non-movable position and a non-interfering and non-moveable position;a locking mechanism, selectively positionable in a set lock position, a set unlock position and a set latch position, for selectively controlling movement of the locking element; anda controller for detecting the positions of the locking element;wherein when the locking mechanism is in its set lock position, the locking element is in its interfering and non-movable position;wherein when the locking mechanism is in its set unlock position, the locking element is in its non-interfering and non-moveable position; andwherein when the locking mechanism is in its set latch position, the locking element is in its biased and moveable position.
  • 11. A wireless lock assembly for selectively locking and unlocking a handle positionable in a housing, the assembly comprising: a locking element, selectively positionable between a lowered position and a raised position, for selectively locking the handle in the housing; andan electronically controlled locking mechanism, selectively positionable in a set lock position, a set unlock position and a set latch permitting position, for selectively controlling movement of the locking element;wherein the locking mechanism includes a blocking portion to prevent movement of the locking element away from the lowered position toward the raised position when the locking mechanism is in its lock position;wherein the locking element and the locking mechanism are operatively mounted adjacent to the housing and external of the handle.
  • 12. A wireless lock assembly for selectively locking and unlocking a handle positionable in a housing, the assembly comprising: a locking element, selectively positionable between a handle interference position and a handle non-interference position, for selectively locking the handle in the housing; andan electronically controlled locking mechanism, selectively positionable in a first set position, a second set position and a third set position, for selectively controlling movement of the locking element;wherein when the locking mechanism is in the first set position, the locking element is in the handle interference position in engagement with the handle, and the locking mechanism prevents movement of the locking element out of the handle interference position toward the handle non-interference position via a blocking portion of the locking mechanism;wherein when the locking mechanism is in the second set position, the locking element is in the handle non-interference position out of engagement with the handle via a lifting portion of the locking mechanism; andwherein when the locking mechanism is in the third set position, the locking element is biased to the handle interference position by a biasing element providing a biasing force, and the locking mechanism is adapted to permit movement of the locking element out of the handle interference position against the biasing force;wherein the locking element and the locking mechanism are operatively mounted adjacent to the housing and external of the handle.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a non-provisional application claiming priority under 35 U.S.C. 119(e) to U.S. Provisional Application Ser. No. 61/636,263 filed on Apr. 20, 2012.

US Referenced Citations (139)
Number Name Date Kind
1370190 Cook Mar 1921 A
1875768 Smith Sep 1932 A
1907625 Vogt May 1933 A
2269264 Haim Jan 1942 A
2703431 Tatom Mar 1955 A
2741503 Thompson Apr 1956 A
2753202 Smith et al. Jul 1956 A
2833536 Joachim et al. May 1958 A
2877637 Greenwald Mar 1959 A
2896990 Garvey et al. Jul 1959 A
2903288 Joachim et al. Sep 1959 A
2943880 Joachim et al. Jul 1960 A
2978266 Poe Apr 1961 A
3080633 Reddy Mar 1963 A
3081078 Lohr Mar 1963 A
3089330 Kerr May 1963 A
3200623 Peters Aug 1965 A
3285043 Dauenbaugh Nov 1966 A
3302434 Dauenhaugh Feb 1967 A
3438227 Wolniak Apr 1969 A
3548618 Dauenbaugh Dec 1970 A
3550412 Pitel et al. Dec 1970 A
3594876 Gunther Jul 1971 A
3688352 Gunther Sep 1972 A
3834198 Wiczer Sep 1974 A
3835678 Meyer et al. Sep 1974 A
3854310 Paull et al. Dec 1974 A
3947060 Zimmer et al. Mar 1976 A
4159138 Smith Jun 1979 A
4167104 Bond Sep 1979 A
4213230 Hoen Jul 1980 A
4227723 Rosell Oct 1980 A
4268076 Itol May 1981 A
4300664 Helm et al. Nov 1981 A
4355830 Rau, III Oct 1982 A
4411544 Gallman Oct 1983 A
4552001 Roop Nov 1985 A
4556244 Bisbing Dec 1985 A
4583775 Bisbing Apr 1986 A
4594637 Falk Jun 1986 A
4609215 Self et al. Sep 1986 A
4671547 Weinerman et al. Aug 1987 A
4685709 Kambic Aug 1987 A
4689976 Larsen Sep 1987 A
4744392 Tade et al. May 1988 A
4760721 Steinbech Aug 1988 A
4762348 Matssumoto et al. Aug 1988 A
4796932 Tame Jan 1989 A
4803460 Rhee et al. Feb 1989 A
4819983 Alexander et al. Apr 1989 A
4838055 Gallagher Jun 1989 A
4842313 Boyko et al. Jun 1989 A
4906035 Nalgai et al. Mar 1990 A
4917022 Ogasawara et al. Apr 1990 A
4899581 Myers Dec 1990 A
4993247 Minemura Feb 1991 A
5035452 Rogers Jul 1991 A
5038588 Hall Aug 1991 A
5054300 Nakahara et al. Oct 1991 A
5106251 Steinbach Apr 1992 A
5148691 Wallden Sep 1992 A
5160180 Mlynarczyk Nov 1992 A
5186516 Alexander et al. Feb 1993 A
5199288 Merilainen et al. Apr 1993 A
5269161 Stillwagon Dec 1993 A
5272894 Stillwagon et al. Dec 1993 A
5349345 Vanderschel Sep 1994 A
5394718 Hotzl Mar 1995 A
5467619 Stillwagon et al. Nov 1995 A
5548982 Rawling Aug 1996 A
5561420 Kleefeldt Oct 1996 A
5575515 Iwamoto et al. Nov 1996 A
5586459 Bullock Dec 1996 A
5617082 Denison et al. Apr 1997 A
5618082 Jachmich Apr 1997 A
5636881 Stillwagon Jun 1997 A
5639130 Rogers et al. Jun 1997 A
5656867 Kokubu et al. Aug 1997 A
5680783 Kuroda et al. Oct 1997 A
5782384 Bartel Jun 1998 A
5791179 Brask Aug 1998 A
5793122 Dingwall Aug 1998 A
5813257 Cleghorn et al. Sep 1998 A
5823027 Glick et al. Oct 1998 A
5836187 Janssen Nov 1998 A
5839305 Aston Nov 1998 A
5862693 Myers et al. Jan 1999 A
5870915 D'Hont Feb 1999 A
5882053 Bekins Mar 1999 A
5915766 Baumeister et al. Jun 1999 A
5921119 Myers et al. Jul 1999 A
6005487 Myers et al. Dec 1999 A
6046681 Solop Apr 2000 A
6049287 Yulkowski Apr 2000 A
6068305 Myers et al. May 2000 A
6068308 Molzer May 2000 A
6068487 Dionne May 2000 A
6106035 Hetherington Aug 2000 A
6130611 Pellaton et al. Oct 2000 A
6196037 Urschel et al. Mar 2001 B1
6256932 Jyawook et al. Jul 2001 B1
6318138 Mathews Nov 2001 B1
6341448 Murray et al. Jan 2002 B1
6345522 Stillwagon et al. Feb 2002 B1
6360573 Ming-Chih Mar 2002 B1
6370928 Chies et al. Apr 2002 B1
6374649 Holcomb et al. Apr 2002 B1
6382003 Watanuki May 2002 B1
6406071 La Viola et al. Jun 2002 B1
6442986 Russell Sep 2002 B1
6474119 Halvorson et al. Nov 2002 B1
6490896 Segawa Dec 2002 B2
6496101 Stillwagon Dec 2002 B1
6525644 Stillwagon Feb 2003 B1
6543264 Frolov Apr 2003 B2
6564600 Davis May 2003 B1
6575504 Roatis et al. Jun 2003 B2
6580355 Milo Jun 2003 B1
6581986 Roatis et al. Jun 2003 B2
6609402 Blankenship Aug 2003 B2
6615623 Ormerod Sep 2003 B1
6684671 Beylotte et al. Feb 2004 B2
6826935 Gokcebay Dec 2004 B2
6867685 Stillwagon Mar 2005 B1
6874828 Roatis et al. Apr 2005 B2
7073827 Cherry Jul 2006 B2
7089770 Ramsauer et al. Aug 2006 B2
7145434 Mlynarczyk et al. Dec 2006 B2
7191624 Beylotte et al. Mar 2007 B2
7296447 Priest et al. Nov 2007 B2
7469564 Shaw Dec 2008 B1
7681424 Antonucci Mar 2010 B2
7845202 Padilla Dec 2010 B2
20020078722 Corey Jun 2002 A1
20030127866 Martinez et al. Jul 2003 A1
20040154363 Beylotte et al. Aug 2004 A1
20040172991 Forster et al. Sep 2004 A1
20050161953 Roatis et al. Jul 2005 A1
20060186678 Myers et al. Aug 2006 A1
Foreign Referenced Citations (1)
Number Date Country
02-091371 Mar 1990 JP
Related Publications (1)
Number Date Country
20130285393 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61636263 Apr 2012 US