Not Applicable.
Not Applicable.
Not Applicable.
1. Field of the Invention (Technical Field)
The present invention relates to methods and apparatuses for protecting vehicles or other targets from projectiles such as rocket-propelled grenades.
2. Description of Related Art
There is a pressing need for anti-Rocket Propelled Grenade protection systems. Some system components are available, including a low velocity pellet defense system that is cued by an optical sensor. It can give good directional information, but has no provision to give the accurate range information needed to generate the very precise timing signal to work correctly. The present invention provides a millimeter wave electronic curtain based on radar with much reduced signal processing requirements to provide this signal.
The present invention is of an apparatus and method for protecting against incoming projectiles, comprising: transmitting two radar waveforms, the first waveform comprising a pulsed continuous wave waveform, and the second waveform comprising a pulsed linear chirp waveform over a bandwidth; and based on returned radar data, causing deployment of a defense mechanism to intercept a detected incoming projectile. In the preferred embodiment, deployment occurs on detection of an amplitude peak distinct from that of ground clutter. Preferably, the waveforms are interleaved, the first waveform employs high pulse repitition frequency, and the bandwidth is at least approximately 500 MHz (most preferably about 500 MHz).
Further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:
The present invention is of a method and apparatus for detecting a high velocity projectile and, upon detection, taking active countermeasures. The invention preferably employs a dual waveform implemented in digitally controlled adaptable radar. The first waveform is preferably a pulsed continuous wave (CW) waveform providing detection and velocity measurement capability over a wide variation in initial range to the target, but with only moderate range resolution. The second waveform detects targets only over a very narrow variation in range, but provides extremely accurate range resolution to control fusing. The purpose of the dual waveform is to implement both detection and precise fusing the same low cost radar. Multiple polarizations are preferably used to help discriminate targets from clutter.
Tracking is ordinarily required to assure that a proximity fuse is not triggered by other objects entering its field of regard. The proximity fuse detonates the warhead at the correct time when the tracked target reaches a precisely calculated range.
The present invention takes advantage of highly flexible digital waveform control to preferably implement both functions in one piece of hardware. The initial waveform, a high pulse repitition frequency (HPRF), pulsed CW waveform, detects and identifies the target, providing initial range, velocity, acceleration, and estimated time and speed of arrival. With this information, tracking of the target becomes unnecessary. The second waveform, preferably a pulsed linear chirp waveform over a wide bandwidth (typically 500 MHz or more), sets up an “electronic curtain” at a desired range. This waveform detects a target over a very narrow set of ranges only, but provides very precise range and velocity information on targets entering this set of ranges. When the desired target “pierces the curtain”, this velocity information in conjunction with the previous estimates of time and velocity at arrival are used to assure that it is the correct target and to trigger the weapon's warhead. Because one only needs to examine a small range swath and the target always has a very high velocity, one can use very narrow filters and very small data sets to detect the approaching projectile.
Countermeasures other than deployment of pellets include those now known or known in the future in the art, including firing of a high-powered laser, firing of an intercepting missile (with or without explosive effect), deployment of a physical barrier, deployment of electronic countermeasures, and firing of a pulsed energy weapon.
Note that in the specification and claims, “about” or “approximately” means within twenty percent (20%) of the numerical amount cited.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.
This application claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 60/985,336, entitled “Electronic Curtain for Vehicle Protection”, filed on Nov. 5, 2007, and the specification and claims thereof are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2433804 | Wolff | Dec 1947 | A |
2649538 | Marlowe et al. | Aug 1953 | A |
2695995 | Cauchois | Nov 1954 | A |
2941200 | De Lange et al. | Jun 1960 | A |
2977587 | Herbst | Mar 1961 | A |
3114909 | Varela | Dec 1963 | A |
3140489 | Downie | Jul 1964 | A |
3161870 | Pincoffs | Dec 1964 | A |
3188637 | Mortley | Jun 1965 | A |
3196437 | Mortley et al. | Jul 1965 | A |
3274595 | Page | Sep 1966 | A |
3286955 | French et al. | Nov 1966 | A |
3691558 | Hoard et al. | Sep 1972 | A |
3866224 | Porter et al. | Feb 1975 | A |
3934253 | Wiedemann et al. | Jan 1976 | A |
3945011 | Glasgow | Mar 1976 | A |
3953856 | Hammack | Apr 1976 | A |
3979748 | Gellekink | Sep 1976 | A |
3996590 | Hammack | Dec 1976 | A |
4110755 | Zottl | Aug 1978 | A |
4136341 | Mulder et al. | Jan 1979 | A |
4241347 | Albanese et al. | Dec 1980 | A |
4347513 | Schindler | Aug 1982 | A |
4404562 | Kretschmer et al. | Sep 1983 | A |
4670755 | Gellekink et al. | Jun 1987 | A |
4673183 | Trahan | Jun 1987 | A |
4806936 | Williams et al. | Feb 1989 | A |
4812035 | Freedman et al. | Mar 1989 | A |
4861158 | Breen | Aug 1989 | A |
4920347 | Kurihara | Apr 1990 | A |
5021791 | Hurd | Jun 1991 | A |
5229540 | Schabdach et al. | Jul 1993 | A |
5661254 | Steuer et al. | Aug 1997 | A |
6610971 | Crabtree | Aug 2003 | B1 |
6720907 | Miron | Apr 2004 | B1 |
7046187 | Fullerton et al. | May 2006 | B2 |
7066427 | Chang | Jun 2006 | B2 |
7104496 | Chang | Sep 2006 | B2 |
7114428 | Lloyd | Oct 2006 | B1 |
7190304 | Carlson | Mar 2007 | B1 |
7202809 | Schade et al. | Apr 2007 | B1 |
7362261 | Flacke | Apr 2008 | B2 |
7654185 | Yannone | Feb 2010 | B1 |
20060238403 | Golan et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
1605225 | Dec 2005 | EP |
Number | Date | Country | |
---|---|---|---|
60985336 | Nov 2007 | US |