The present invention is directed to a deadbolt. In particular the invention is directed to a deadbolt lock arrangement that is operable both manually and electronically.
Traditionally secure locking systems such as deadbolts have been operated and controlled manually. However, the use of electronic systems for the control and operation of locks is becoming increasingly common. The present invention is directed to an arrangement that permits the electronic and manual control of the lock operation to be separated to allow manual operation of the lock independently of the electronic drive system for the lock. The lock of the present invention is useful in situations where an electronic controller is temporarily unavailable, for example where a controller has been lost, misplaced or damaged.
Therefore, according to a first aspect of the present invention, although this need not be the broadest, nor indeed the only aspect of the invention there is provided an electronic deadbolt lock arrangement including:
In preference said manual control means is a thumb turn.
In preference said manual control means is a key.
In preference said power drive is an electric motor.
In such a manner the electronic deadbolt lock arrangement of the invention may be used to lock or unlock a door by operation of a key, a thumb turn or an electric motor.
In preference said transmission means includes an inner and outer concentric rotatable cylinders.
In preference the two cylinders are biased into a coupled position by biasing means and are decoupled by a centrally located cam acting on a pin engaging mechanism urging a pin out of engagement to thereby decouple the cylinders.
In preference said inner and outer cylinders may be coupled and de-coupled by said pin extending from one cylinder engaging an aperture in the other cylinder.
In preference said pin extends from and is biased from said outer into said inner cylinder.
In preference said lock further includes a projection adapted to engage said pin, said projection operable by a cam to move the pin out of said inner cylinder to cause a decoupling thereof.
In preference said cam is mounted on a drive shaft passing axially through said cylinders.
In preference said inner cylinder is connected to a rack and gear mechanism whereby rotation of the inner cylinder serves to move said bolt between locked and unlocked positions, said outer cylinder is operatively connected to a motor serving as a power drive that rotates the outer cylinder.
The electric motor rotates in a clockwise or anti-clockwise direction to extend or retract a lock bolt.
However when operating the lock bolt with the key or thumb turn the transmission can decouple the electric motor so that rotation of the lock bolt can occur independently of the electric motor.
In one form of the invention the transmission takes the form of a pair of concentric cylinders movable over one another that may be coupled and de-coupled by a pin extending from one cylinder engaging an aperture in the second cylinder.
Preferably there are two or more manual control means.
In preference the thumb turn is coupled through a transmission to a rotatable shaft, said transmission multiplying the relative rotation of the thumb turn applied to the shaft.
In preference said key operates a lock barrel said lock barrel operatively connected to the bolt through a coupling enabling the key to operate the bolt only when fully inserted into said lock barrel.
In preference said biased coupling includes a biased connector adapted to engage a coupling element, said element operatively connected to said bolt.
Preferably said connector includes a cavity adapted to be engaged by a projection of said connector, the cavity of a size and shape to be engageable by said projection regardless of the relative rotational position of said connector and said coupling element.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several implementations of the invention and, together with the description, serve to explain the advantages and principles of the invention. In the drawings,
The following detailed description of the invention refers to the accompanying drawings. Although the description includes exemplary embodiments, other embodiments are possible, and changes may be made to the embodiments described without departing from the spirit and scope of the invention. Wherever possible, the same reference numbers will be used throughout the drawings and the following description to refer to the same and like parts.
The drawings illustrate a door lock 10 incorporating a locking mechanism in accordance with the invention. The lock 10 is adapted for both manual and electronic operation and includes a lock bolt 12 operatively attached to a locking mechanism (discussed later) located in a generally circular housing 14. The lock 10 is adapted to be fixed to a door and the lock 10 may be operated by rotation of either of a key 16 in the lock, a thumb turn 18 disposed on an opposite side of the door to the key, or by remote controlled electronic means (not shown).
In broad outline the lock bolt 12 is attached at one end to a rack 20. The rack 20 is driven by the locking mechanism and either extends the locking bolt 12 to thereby effecting a locking action, or retracts the lock bolt 12 thereby releasing the lock 10.
As can be seen in
The inner cylinder 26 is supported inside the body of an outer cylinder 28. Further, during operation and control of the locking mechanism by electronic means the inner cylinder 26 is coupled to the outer cylinder 28 by a mechanism to be described herein below such that any rotation of the outside cylinder 28 results in rotation of the inside cylinder 26 and inner cylinder output shaft 24 which in turn rotates the drive shaft gear 22 to act on the rack 20 to thereby move the lock bolt 12.
The outer cylinder 28 incorporates an axial projection 30 located on an opposing side of the outer cylinder 28 to the drive shaft gear 22. The axial projection 30 carries a perimeter gear 32. The perimeter gear 32 meshes with at least one electric motor gear 34 driven by an electric motor 36. Thus in normal electronic operation of the lock 10, the rack 20 and lock bolt 12 are activated by the drive shaft gear 22 which is driven through the perimeter gear 32 acted on by the motor gear 34. As described the inner cylinder 26, outer cylinder 28 and associated perimeter gear 32 act together as a transmission where the force from the motor is transmitted to the rack 20.
The electric motor 36 is of the high torque geared type making any non-electrical rotation of motor gear 34 very difficult.
It can thus be seen that under control of the electric motor 36, the drive shaft gear 22 and the motor gear 34 are coupled and that the lock 10 is only operable in response to rotation of the motor gear 34. It will be realised that in order for the motor gear 34 to operate on the drive shaft gear 22 and therefore the lock bolt 12 as described it is necessary that the relative positions of the inner cylinder 26 and outer cylinder 28 be maintained during the lock/unlock operation.
However, the engagement of the inner cylinder 26 and outer cylinder 28 as described is able to be de-coupled to thereby override the electronic motor control of the locking process.
A radial aperture 38 extends through the wall of the inner cylinder 26 from an outer surface to an inner surface. Similarly, a radial aperture 40 in the outer cylinder 28 extends through the wall thereof from an outer surface to an inner surface. In the engaged condition, in which the motor 36 is coupled to the transmission, the apertures 38 and 40 are aligned as shown in
The outer pin 44 is, as shown in
Thus, during electric operation, rotation of the outer cylinder 28 in a clockwise direction causes a shoulder 66 of outer cylinder aperture 40 to abut the pin 44 causing it to rotate and that portion of the pin 44 in the aperture 38 in the protrusion distance 60 then acts on the inner cylinder 26 causing it to rotate in unison.
Within the bore 52 of the inner cylinder 26 a cam 68 abuts the shoulder 46 of the pin 42. The cam 68 is carried on a shaft 70 that is attached at one end to the thumb turn 18 and at a second end to the output drive shaft 24. Thus, the cam 68 rotates directly in response to either rotation of the thumb turn 18 or rotation of the key 16.
In
Operation of the cam 68 causes the pin 42 and consequently the pin 44 to move radially away from the centre of the inner cylinder 26 against spring 62 as shown in
The disengagement of the inner cylinder 26 and outer cylinder 28 effectively decouples the operation of the lock bolt 12, which is influenced by rotation of the inner cylinder 26 through the output drive shaft 24 and the drive shaft gear 22, from the motor gear 34 which is influenced by rotation of the outer cylinder 28 through the perimeter gear 32.
Therefore, rotation of the inner cylinder 26 now produces a corresponding rotation of the drive shaft 24 and drive shaft gear 22 and consequently the rack 20. Accordingly, the lock bolt 12 is extended and retracted in response to manual turning of the thumb turn 18 and key 16.
In
In
The effect of rotation of the thumb turn 18 or key 16 in a clockwise direction on the relative positions of the two cylinders 26, 28 and the pins 42, 44 is shown in these Figures. As will also be appreciated the rotation of the thumb turn 18 or key 16 in a clockwise direction also causes a retraction in the lock bolt 12 thereby causing an unlocking action.
As the lock is rotated the inner cylinder 26 is moved back to the re-lock position, the inner pin 42 is moved into alignment with the outer pin 44 allowing the spring 62 to bias the pin 44 downwards radially toward the centre of inner cylinder 26 and back into engagement with the inside cylinder aperture 38 as shown in
It is important to realise that the electrical control of the operation of the lock 10 of the present invention can be instituted and can override the manual operation of the lock at any point in the locking/unlocking cycle.
An advantage of this arrangement is that the lock 10 may be operated with the key 16 to disconnect the electric motor and operate the lock bolt 12 but may be reset either with the use of a the key 16 or thumb turn 18, or by operation of the electric motor.
This allows the lock to be manually operated and then automatically reset when the next electrical lock command is given.
Thus, as illustrated in
The above mode of operation may be of use if one imagines a situation in which manual operation of the lock has been initiated because of a temporary misplacement of a remote electronic opening device. Should the device be located and activated this will not have any adverse affect on the lock if manual operation is partially complete. The motorised operation of the lock will simply take over from the manual operation.
The lock of the invention has been described with reference to a lock having a generally cylindrical transmission in the form of the inner and outer cylinders. In further embodiments of the invention the lock may be exemplified in the form of a linear transmission in which engaging members move relative to one another.
It is to be understood that when under manual operation of the lock the inner and outer cylinders have been disengaged or decoupled, it would require a fair bit of precision to align the cylinders again for them to couple. Accordingly, it may be desirable for the manual thumb turn or key to always be biased to a first position and hence, the cylinders being coupled by the operation of the electric motor driving the outer cylinder until the cylinder apertures align and the pin drops down.
In a further aspect of the invention and as illustrated in
In a further aspect of the invention there is provided a key bypass mechanism that enables the lock to be unlocked in case the electric motor fails with the lock being locked or in an intermediate position.
Referring specifically to
In one instance, by virtue of the size and shape of cavity 114, projection 122 can always be inserted into the cavity 114, regardless of the state of the lock 10. Rotation of key 16 then causes one of the shoulders 120 or projection 122 to engage corresponding shoulder 118 in the cavity thereby rotating the coupling element 104 and hence shaft 24.
Springs 102 are held within lugs 124 of connector 100 that are positioned so that the springs always abut against the base 112. The skilled addressee should now appreciate that the key has to be used to press the connector 100 to that the projection 122 engages within cavity 114.
In another instance, however, it may be that the cavity is not sufficiently large and accordingly the coupling element 104 is longitudinally biased using spring 107 so that the whole coupling element 104 can move longitudinally forward to enable the key to be fully inserted into the barrel 94 to operate the lock. Then upon rotation of the key, the projection eventually align with the cavity at which point the rivet means returns to its biased position.
The invention has been described by way of example. The examples are not, however, to be taken as limiting the scope of the invention in any way. Modifications and variations of the invention such as would be apparent to a skilled addressee are deemed to be within the scope of the invention.
It is to be understood that the clutch mechanism as described above may be used with different types of thumb turns and key barrel lock arrangement and it is not intended to limit the invention to the embodiment as described above.
It is also to be understood that the mechanical stroke or angular rotation is always less than the electronic stroke or rotation to enable the clutch mechanism to be reset after a key has operated the lock.
In principle what one can do is turn the thumb turn to disconnect the transmissions to open the lock manually, shut the door behind them and then electronically operate the lock to lock it.
Electronic micro switches may be included in the lock bolt to sense the true position of the lock bolt for lock monitoring and control.
Further advantages and improvements may very well be made to the present invention without deviating from its scope. Although the invention has been shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope and spirit of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent devices and apparatus.
In any claims that follow and in the summary of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprising” is used in the sense of “including”, i.e. the features specified may be associated with further features in various embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PS 2328 | May 2002 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU03/00593 | 5/16/2003 | WO | 00 | 11/15/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/097969 | 11/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1374908 | Davenport et al. | Apr 1921 | A |
1560503 | Doenges | Nov 1925 | A |
1657402 | Kenworthy et al. | Jan 1928 | A |
4429556 | Kambic | Feb 1984 | A |
4438962 | Soloviff et al. | Mar 1984 | A |
4633688 | Beudat et al. | Jan 1987 | A |
5027629 | Liu | Jul 1991 | A |
5199288 | Merilainen et al. | Apr 1993 | A |
5816085 | Winardi et al. | Oct 1998 | A |
5987945 | Ruano Aramburu | Nov 1999 | A |
6286347 | Frolov | Sep 2001 | B1 |
6543264 | Frolov | Apr 2003 | B1 |
6651468 | Aramburu et al. | Nov 2003 | B1 |
6935149 | Peng et al. | Aug 2005 | B1 |
20030071471 | Lu | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050172685 A1 | Aug 2005 | US |