The present invention relates to an electronic device, and more particularly, to an electronic device having an OLED display and an ambient light sensing method thereof
Description of the Prior Art
A mobile electronic device or a wearable electronic device equipped with a display, is likely to use an ambient light sensor to detect ambient brightness, whereby to adjust screen brightness. The conventional ambient light sensor is disposed in the perimeter area of the screen. However, with the need for higher screen-to-body ratio, the perimeter area of the screen for installing an ambient light sensor has become much smaller. For electronic devices having an organic light-emitting diode (OLED) display, it is possible that the ambient light sensor is disposed under the OLED display. As the OLED display needn't use a backlight module, light can pass through the OLED display to realize the under-display ambient light sensing function. However, in addition to the ambient light, the ambient light sensor on the backside of the OLED display may also receive the light from the OLED display.
One objective of the preset invention is to provide an electronic device having an OLED display and an ambient light sensing method thereof.
In one embodiment, the present invention provides an ambient light sensing method of an electronic device. The electronic device comprises an OLED display and an ambient light sensor. The OLED display has a plurality of pixels. The ambient light sensor is disposed under a first pixel of the plurality of pixels. The ambient light sensing method comprises steps: sensing light by the ambient light sensor in a first sensing interval to generate a first sensing value, wherein the first sensing interval includes a first period and a second period, and wherein the first pixel has a first brightness in the first period and has a second brightness in the second period; sensing light by the ambient light sensor in a second sensing interval to generate a second sensing value, wherein the length of the second sensing interval is the same as that of the first sensing interval, and wherein the first pixel has the second brightness in the second sensing interval; and acquiring an ambient light intensity according to the first sensing value and the second sensing value, wherein the first pixel has an identical hue in the first sensing interval and the second sensing interval.
In one embodiment, the present invention provides an ambient light sensing method of an electronic device. The electronic device comprises an OLED display and an ambient light sensor. The OLED display has a plurality of pixel rows adjacent to each other. The ambient light sensor is disposed under the pixel rows. The ambient light sensing method comprises steps: sensing light by the ambient light sensor in a first sensing interval to generate a first sensing value, wherein the brightness of the plurality of pixel rows changes from a first brightness to a second brightness in sequence in the first sensing interval; sensing light by the ambient light sensor in a second sensing interval to generate a second sensing value, wherein the length of the second sensing interval is the same as that of the first sensing interval, and wherein the plurality of pixel rows has the second brightness in the second sensing interval; and acquiring an ambient light intensity according to the first sensing value and the second sensing value, wherein the plurality of pixel rows has an identical hue in the first sensing interval and the second sensing interval.
In one embodiment, the present invention provides an ambient light sensing method of an electronic device. The electronic device comprises an OLED display and an ambient light sensor. The OLED display has a plurality of pixel rows adjacent to each other. The ambient light sensor is disposed under the pixel rows. The ambient light sensing method comprises steps: sensing light by the ambient light sensor in a first sensing interval to generate a first sensing value, wherein the first sensing interval includes a first period and a second period, and wherein each pixel row has a first brightness in the first period and has a second brightness in the second period; sensing light by the ambient light sensor in a second sensing interval to generate a second sensing value, wherein the length of the second sensing interval is the same as that of the first sensing interval, and wherein each pixel row has the second brightness of the second period in the second sensing interval; and acquiring an ambient light intensity according to the first sensing value and the second sensing value, wherein each pixel row has an identical hue in the first sensing interval and the second sensing interval.
In one embodiment, the present invention provides an electronic device comprising an OLED display and an ambient light sensor, wherein the OLED display has a plurality of pixels, and wherein the ambient light sensor is disposed under a first pixel of the plurality of pixels. The ambient light sensor generates a first sensing value in a first sensing interval, generates a second sensing value in a second sensing interval, and acquires an ambient light intensity according to the first sensing value and the second sensing value. The first sensing interval includes a first period and a second period. The first pixel has a first brightness in the first period and has a second brightness in the second period. The length of the second sensing interval is the same as that of the first sensing interval. The first pixel has the second brightness in the second sensing interval. The first pixel has an identical hue in the first sensing interval and the second sensing interval.
In one embodiment, the present invention provides an electronic device comprising an OLED display and an ambient light sensor, wherein the OLED display has a plurality of pixel rows adjacent to each other, and wherein the ambient light sensor is disposed under the plurality of pixel rows. The ambient light sensor generates a first sensing value in a first sensing interval, generates a second sensing value in a second sensing interval, and acquires an ambient light intensity according to the first sensing value and the second sensing value. In the first sensing interval, the brightness of the plurality of pixel rows changes from a first brightness to a second brightness. The length of the second sensing interval is the same as that of the first sensing interval. The plurality of pixel rows has the second brightness in the second sensing interval. The plurality of pixel rows has an identical hue in the first sensing interval and the second sensing interval.
In one embodiment, the present invention provides an electronic device comprising an OLED display and an ambient light sensor, wherein the OLED display has a plurality of pixel rows adjacent to each other, and wherein the ambient light sensor is disposed under the plurality of pixel rows. The ambient light sensor generates a first sensing value in a first sensing interval, generates a second sensing value in a second sensing interval, and acquires an ambient light intensity according to the first sensing value and the second sensing value. The first sensing interval includes a first period and a second period. Each pixel row has a first brightness in the first period and has a second brightness in the second period. The length of the second sensing interval is the same as that of the first sensing interval. Each pixel row has an identical hue in the first sensing interval and the second sensing interval.
Light can pass through an OLED display. Therefore, an ambient light sensor can sense ambient light even though it is disposed under the OLED display. While an OLED display performs line scan, the pixels on the same row are temporarily turned off to update data in a blanking period.
CountA=AL+Hs×Ls(1−TP1/T1) EQ-1
wherein AL represents the ambient light brightness. After the step S10 ends, the process proceeds to the step S12. In the step S12, the ambient light sensor 14 performs a second sensing in the second sensing interval T2, wherein the length of the second sensing interval T2 is the same as the length of the first sensing interval T1. For the pixel row L3,
CountB=AL+Hs×Ls EQ-2
In the step S14, an ambient light intensity is generated according to the first sensing value CountA and the second sensing value CountB. Because the first sensing value CountA and the second sensing value CountB are generated by the ambient light sensor 14 and TP1 and T1 are parameters preset in the electronic device 10, it is able to eliminate Hs×Ls by solving the simultaneous equations formed by the equations EQ-1 and EQ-2 so as to calculate the ambient light intensity AL.
In the embodiment of
Refer to
CountA=AL+3(1−(TP41−Tg)/T1)Hs×Ls EQ-3
wherein TP41 is the time length of the blanking period BP of the pixel row L4. After the step S20 ends, the process proceeds to the step S22. In a second sensing interval T2, the ambient light sensor 22 performs a second sensing, wherein the length of the second sensing interval T2 is the same as the length of the first sensing interval T1. The ambient light sensor 22 sensing light in the second sensing interval T2 and generates a second sensing value CountB, which may be expressed by equation EQ-4:
CountB=AL+3×Hs×Ls EQ-4
In the step S24, an ambient light brightness is generated according to the first sensing value CountA and the second sensing value CountB. The first sensing value CountA and the second sensing value CountB are generated by the ambient light sensor 22. The first sensing interval T1, the time length TP41 of the blanking period BP and the first time gap Tg are parameters preset in the electronic device 10. By solving simultaneous equations formed by Equations EQ-3 and EQ-4, Hs×Ls can be eliminated so as to calculate the ambient light intensity AL.
CountA=AL+(1−TP1/T1)(Hs1×Ls1+Hs2×Ls2+Hs3×Ls3) EQ-5
The step S32 is performed after the step S30. In the step S32, the ambient light sensor 22 performs a second sensing in the second sensing interval T2, wherein the length of the second sensing interval T2 is the same as the length of the first sensing interval T1. In the second sensing interval T2, each of the pixel rows L2, L3 and L4 remains the second brightness Ls1, Ls2 or Ls3 of the second period TP2 and has the same hue Hs1, Hs2 or Hs3 of the first sensing interval T1. The ambient light sensor 22 senses light in the second sensing interval T2 and generates a second sensing value CountB, which may be expressed by equation EQ-6 as follows:
CountB=AL+(Hs1×Ls1+Hs2×Ls2+Hs3×Ls3) EQ-6
In the step S34, an ambient light brightness is generated according to the first sensing value CountA and the second sensing value CountB. The first sensing value CountA and the second sensing value CountB are generated by the ambient light sensor 22, and TP1 and T1 are parameters preset in the electronic device 20. Therefore, by solving the simultaneous equations formed by the equations EQ-5 and EQ-6, the term (Hs1×Ls1+Hs2×Ls2+Hs3×Ls3) can be eliminated so as to calculate the ambient light intensity AL.
In the embodiment of
The embodiments have been described above to demonstrate the present invention to enable the persons skilled in the art to understand, and make use of the present invention. However, these embodiments are only to exemplify the present invention but not to limit the scope of the present invention. Any modification or variation according to the spirit, principle, and/or characteristic of the present invention is to be also included by the scope of the present invention, which is based on the claims stated below and the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
109131520 | Sep 2020 | TW | national |
This application claims priority for the U.S. provisional patent application no. 62/955,353 filed on 30 Dec. 2019, and Taiwan (R.O.C.) patent application No. 109131520 filed on 14 Sep. 2020, the content of which is incorporated by reference in its entirely.
Number | Name | Date | Kind |
---|---|---|---|
20070035489 | Lee | Feb 2007 | A1 |
20150348509 | Verbeure | Dec 2015 | A1 |
20180143727 | Reynolds | May 2018 | A1 |
20180274974 | Wang | Sep 2018 | A1 |
20200219464 | Callway | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
201128629 | Aug 2011 | TW |
201727457 | Aug 2017 | TW |
Entry |
---|
Examination report issued in corresponding Taiwan Application No. 109131520 dated Mar. 18, 2021 (20 pages). |
Number | Date | Country | |
---|---|---|---|
20210201851 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62955353 | Dec 2019 | US |