This application claims priority from and the benefit under 35 U.S.C. §119(a) of Korean Patent Application No. 10-2014-0135898, filed on Oct. 8, 2014, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field of the Disclosure
Various embodiments of the present disclosure relate to an electronic device having a housing that is formed of a conductive material, and an antenna device thereof.
2. Description of the Related Art
Thanks to the remarkable development of information communication technologies and semiconductor technologies, the distribution and use of electronic devices have been rapidly increasing to unprecedented levels. In addition, the development of more recent electronic devices has shown an increasing convergence of cuntionality that was previously performed by separate electronic devices. For example, a mobile communication terminal provides various functions, such as a TV viewing function (e.g., utilizing mobile broadcasting, such as Digital Multimedia Broadcasting (DMB) or Digital Video Broadcasting (DVB)), music playing function (e.g., MP3 (MPEG Audio Layer-3)), a still image or moving image photographing function, an Internet connection function, and a radio receiving function, in addition to ordinary communication functions, such as voice communication and message transmission/reception.
Meanwhile, such recent electronic devices may include one or more antennas in order to provide various wireless communication functions. The electronic devices may include, for example, a mobile communication antenna, a digital broadcasting reception antenna, a Bluetooth antenna, a Global Positioning System (GPS) antenna, and a Near Field Communication (NFC).
However, as the functionality of such electronc devices increases, there is also a consumer demand to reduce the size of such electronic devices, particularly for handheld devices. Therefore, there can be difficulty in providing multiple antennas in a limited area that can operate with a minimum of interference.
In addition, such electronic devices may include a housing that is formed of a conductive material, such as a metal, and the consturction of such conductive housing has increased. For example, there has been an increase in the manufacture of electronic devices including a housing that is at least partially formed of a metal. However, conventional electronic devices including a housing formed of a conductive material have a problem in that their antenna function is degraded. As a result, there is a need in art is to provide a measure that is capable of preventing the degradation of a radiation function in electronic devices including a housing that is formed of a conductive material.
According to various embodiments of the present disclosure, an electronic device includes a housing constructed of a plurality of housing modules, at least part of each housing modules is formed of a conductive material. The housing, through its construction utilizing a conductive material for at least one of the plurality of housing modules, may be utilized as a constituent element of an antenna.
According to various embodiments of the present disclosure, an electronic device may include a housing including a plurality of housing modules, and a printed circuit board arranged within the housing, and at least one antenna power feeding unit electrically connected to the printed circuit board. The plurality of housing modules may be at least partially formed of a conductive material, and at least one of the conductive materials used in the plurality of housing modules may be electrically connected to the at least one antenna power feeding unit of the printed circuit board to function as an antenna of the electronic device.
According to various embodiments of the present disclosure, a housing of an electronic device may include a plurality of housing modules configured to be assembled with each other. The plurality of housing modules may be at least partially formed of a conductive material, and at least one of the conductive materials of the plurality of housing modules may be electrically connected with an antenna power feeding unit.
According to various embodiments of the present disclosure, an electronic device may include a first module, on which a display device is mounted, a second module fastened (i.e. attached) to the first module, and a printed board mounted on the first module. The second module may be constructed of both a conductive material and a non-conductive material, in which the conductive material may be electrically connected to the printed circuit board so as to function as an antenna for transmitting/receiving a wireless signal, and the non-conductive material may include an auxiliary pattern that is electrically connected to the conductive material. The auxiliary pattern may be configured to adjust a characteristic of the antenna.
As described above, according to various embodiments of the present disclosure, the electronic device and the antenna thereof utilize a conductive material, which is included in at least one of a plurality of housing modules that constitute the housing of the electronic device, to act as an antenna. Thus, it is possible to the prevent degradation of radiation performance in a manner heretofore unknown.
In addition, according to various embodiments of the present disclosure, an antenna is tunable by changing only some of the plurality of housing modules that constitute housing, rather than the entire housing. This enables the reduction of development costs at the time of developing electronic devices that have the same design but are different from each other in terms supporting different or overlapping frequency bands.
The above and other objects, features, and advantages of the present disclosure will become more apparent to a person of ordinary skill in the art from the following detailed description in conjunction with the accompanying drawings, in which:
Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. Specific embodiments are shown in the drawings and the detailed descriptions are given in corresponding sections, but an artisan should understand that the disclosure and the appended claims are not limited to the description provided herein for illustrative purposes For example, the present disclosure includes various embodiments in which modifications and changes may be made therein. Various embodiments of the present disclosure should be construed by an artisan to cover all modifications, equivalents, and/or alternatives falling within the spirit and scope of the present disclosure.
In the description of the drawings, identical or similar reference numerals are used to designate identical or similar elements.
As used in various portions of the present disclosure, the expressions “include”, “may include” and other conjugates refer to the existence of a corresponding disclosed function, operation, or constituent element, and do not limit one or more additional functions, operations, or constituent elements to the description included herein.
Further, as used in various embodiments of the present disclosure, the terms “include”, “have”, and their conjugates are intended merely to denote a certain feature, numeral, step, operation, element, component, or a combination thereof, and should not be construed to initially exclude the existence of or a possibility of addition of one or more other features, numerals, steps, operations, elements, components, or combinations thereof.
The term “or” used in various embodiments of the present disclosure includes any or all of combinations of listed words. For example, the expression “A or B” may include A, may include B, or may include both A and B.
The expressions such as “first”, “second”, or the like used in various embodiments of the present disclosure may modify various component elements in the various embodiments but do not limit corresponding component elements. For example, the above expressions do not limit the sequence and/or importance of the elements. The above expressions are used merely for the purpose of distinguishing an element from the other elements. For example, a first user device and a second user device indicate different user devices although both of them are user devices and typically does not imply there is a sequence of elements. For example, a first element may be termed a second element, and likewise a second element may also be termed a first element without departing from the scope of various embodiments of the present disclosure.
In the case where an element is referred to as being “connected” or “accessed” to other elements, it should be understood that not only the element is directly connected or accessed to the other elements, but also another intermediate element may exist between them. Contrarily, when an element is referred to as being “directly coupled” or “directly connected” to any other element, it should be understood that no element is interposed therebetween.
The terms as used in embodiments of the present disclosure are used to facilitate understanding of a specific embodiment, and not to limit the present disclosure and appended claims. As used herein, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless defined differently, all terms used herein, which include technical terminologies or scientific terminologies, have the same meaning as that understood by a person skilled in the art to which the present disclosure belongs. Such terms as those defined in a generally used dictionary are to be interpreted to have the meanings equal to the contextual meanings in the relevant field of the art, and are not to be interpreted to have ideal or excessively formal meanings unless clearly defined in the present disclosure.
For example, the electronic device may include at least one of a smartphone, a tablet Personal Computer (PC), a mobile phone, a video phone, an electronic book (e-book) reader, a desktop PC, a laptop PC, a netbook computer, a Personal Digital Assistant (PDA), a Portable Multimedia Player (PMP), an MP3 player, a mobile medical appliance, a camera, and a wearable device (e.g. a Head-Mounted-Device (HMD) such as electronic glasses, electronic clothes, an electronic bracelet, an electronic necklace, an electronic “appcessory”, electronic tattoos, or a smartwatch). just to name a few non-limiting devices.
According to some embodiments, the electronic device may be a smart home appliance. For example, the smart home appliance may include at least one of a television, a Digital Video Disk (DVD) player, an audio, a refrigerator, an air conditioner, a vacuum cleaner, an oven, a microwave oven, a washing machine, an air cleaner, a set-top box, a TV box (e.g., Samsung HomeSync™, Apple TV™, or Google TV™), a game console, an electronic dictionary, an electronic key, a camcorder, and an electronic photo frame, just to name some non-limiting examples of appliances.
According to some embodiments, the electronic device may include at least one of various medical appliances (e.g., magnetic resonance angiography (MRA), magnetic resonance imaging (MRI), computed tomography (CT), and ultrasonic machines), navigation equipment, a global positioning system (GPS) receiver, an event data recorder (EDR), a flight data recorder (FDR), automotive infotainment device, electronic equipment for ships (e.g., ship navigation equipment and a gyrocompass), avionics, security equipment, a vehicle head unit, an industrial or home robot, an automatic teller machine (ATM) of a banking system, and a point of sales (POS) of a shop, just to name some more non-limiting applications.
According to some embodiments, the electronic device may include at least one of a part of furniture or a building/structure, an electronic board, an electronic signature receiving device, a projector, and various kinds of measuring instruments (e.g., a water meter, an electric meter, a gas meter, and a radio wave meter).
The electronic device according to various embodiments of the present disclosure may be a combination of one or more of the aforementioned various devices and/or applications. Further, the electronic device according to various embodiments of the present disclosure may be a flexible device. Further, it will be apparent to those skilled in the art that the electronic device according to various embodiments of the present disclosure is not limited to the aforementioned devices.
Hereinafter, an electronic device according to various embodiments of the present disclosure will be described with reference to the accompanying drawings. The term “user” as used in various embodiments of the present disclosure may refer to a person who uses an electronic device or a device (e.g., artificial intelligence electronic device) that uses an electronic device.
Prior to detailed description, it is to be noted that, in the drawings, a conductive material and a non-conductive material will be distinguished by a difference in shading.
Referring to
With reference to
The housing 110 may include a plurality of housing modules 111, 112, and 113. For example, the housing 110 may be formed by assembling the plurality of housing modules 111, 112, and 113 together. The plurality of housing modules 111, 112, and 113 may be assembled such that at least one of them may be separated by a user without using a separate tool, for a non limiting example, a snap fit, press fit, interlocking fit, etc. For example, in order to insert or replace a battery (not illustrated), the user may separate at least one of the plurality of housing modules 111, 112, and 113. Alternatively, some of the plurality of housing modules 111, 112, and 113 may be mechanically connected by fasteners (e.g., by screws) such that they cannot be separated without using a tool (e.g., a screwdriver).
With continued reference to
The non-conductive materials 111b, 112b, and 113b may be formed of an insulator that does not conduct electricity, such as an injection-molded product (plastic). The conductive materials 111a, 112a, 113a may be formed of a metal. For example, the conductive materials 111a, 112a, and 113a may be formed of an alloy. The alloy may be selected from, for example, Steel Use Stainless (SUS), nickel steel, chrome steel, and nickel-chrome steel.
Each of the plurality of housing modules 111, 112, and 113 may be formed by joining the conductive materials 111a, 112a, and 113a and the non-conductive materials 111b, 112b, and 113b, respectively, through various methods. For example, the conductive materials 111a, 112a, and 113a and the non-conductive materials 111b, 112b, and 113b may be connected. respectively, by using, for example, double-sided tape or adhesive, or the conductive materials 111a, 112a, and 113a may be deposited or coated on the non-conductive materials 111b, 112b, and 113b, respectively, just to name some possible constructions. Alternatively, the plurality of housing modules 111, 112, and 113 may be formed through mechanical assembly (e.g., press-fitting) of the conductive materials 111a, 112a, and 113a with the non-conductive materials 111b, 112b, and 113b, respectively.
The conductive materials 111a, 112a, and 113a, which are respectively included in the plurality of housing modules 111, 112, and 113, may be electrically isolated from each other. In addition, the plurality of housing modules 111, 112, and 113 may be formed to be exposed to the outside of the conductive materials 111a, 112a, and 113a, respectively. In other words, the conductive materials 111a, 112a, and 113a included in the plurality of housing modules 111, 112, and 113 may form at least one side surface of the electronic device 100.
At least one of the conductive materials 111a, 112a, and 113a included in the plurality of housing modules 111, 112, and 113 may function as one constituent element of an antenna of the electronic device 100. For example, at least one of the conductive materials 111a, 112a, and 113a may function as an antenna, and the antenna can be suitable for one or more types of wireless transmission. The antenna element may comprise, for example, a mobile communication antenna for 2G (Generation), 3G or 4G mobile communication, a Bluetooth antenna for Bluetooth communication, a Near Field Communication (NFC) antenna, a wireless LAN antenna, a wireless charging antenna, a diversity antenna, or a Global Positioning System (GPS) antenna for position measurement. In addition, the antenna may be any of various types of antenna, such as a coupling antenna, a Planar Inverted-F Antenna (PIFA), a loop antenna, or a patch antenna.
At least one of the conductive materials 111a, 112a, and 113a may be electrically connected to the antenna so as to extend the ground area of the antenna, or may be connected to a ground area of a Printed Circuit Board (PCB) of the electronic device 100 so as to extend the ground area of the electronic device 100.
Meanwhile, the electronic device 100 illustrated in
In addition,
Referring now to
Hereinafter, an antenna power feeding structure will be described with reference to the first module 111 positioned in the upper end portion of the electronic device 100. In addition, descriptions will be made regarding a case where the first module 111 includes three antennas.
Referring now to
With reference to
With reference to
The specifications (e.g., the shape, size, and thickness) of the conductive material 111a may be changed to correspond to the characteristics of the first antenna (e.g., a resonance frequency of the first antenna). Alternatively, according to a particular embodiment, the contact position between the first power feeding unit 121 and the conductive material 111a may be changed to correspond to the characteristics of the first antenna (e.g., resonance frequency). In other words, according to the embodiment of the present disclosure, the characteristics of the first antenna may be tuned by adjusting the specification of the conductive material 111a or its contact position with the first power feeding unit 121. It may be possible to have additional first modules 111 of different specifications of conductive material 111a provided with the device so that user can swap one first module for another first module.
According to a particular embodiment of the present disclosure, the printed circuit board 120 may further include a matching end (not illustrated) for tuning the characteristics of the first antenna. The matching end may include a resistor, an inductor, or a capacitor.
According to a particular embodiment of the present disclosure, as idneitifed by the dashed lines in
With reference to
In the foregoing, it has been described that the first, second and third antennas are directly fed with power. However, the embodiments of the present disclosure are not limited thereto. For example, according to a some embodiments, the first, second and third antennas may be indirectly fed with power.
In addition, it has been described herein that the printed circuit board 120 includes first, second and third power feeding terminals for the first, second and third antennas. However, the printed circuit board 120 may further include first, second and third ground terminals for respective the first, second and third antennas.
In the foregoing, it has been described that the non-conductive material 111b includes separate antennas (e.g., the second and third antennas). However, the embodiments of the present disclosure are not limited thereto. For example, according to a particular embodiment of the present disclosure, the non-conductive material 111b may include an auxiliary antenna pattern for the first antenna. In other words, the conductive material 111a functioning as the first antenna and the auxiliary antenna pattern positioned on the non-conductive material 111b may be electrically connected so that they may function as one antenna. In such a case, the characteristics of the antenna may be tuned by changing the form of the auxiliary antenna pattern.
According to the above-mentioned embodiment, the electronic device may implement an antenna using at least one of the plurality of housing modules that constitute the housing. This may improve flexibility for antenna design at the time of developing an electronic device. For example, according to the embodiment of the present disclosure, the antenna characteristics of the electronic device may be tuned by changing (e.g. replacing) some of the modules that function as antennas with modules with antennas of a different characteristic without replacing the entire housing of the electronic device.
Referring now to
As described above with reference to
According to the above-mentioned embodiment of the present disclosure, an antenna may be formed using a module that is removable by the user. According to the embodiment of the present disclosure, since the third module 213 is capable of being detached/attached, the electronic device allows the replacement of the battery 295.
Referring now to
The first module 711 may include a first conductive material 711a_1 that forms the rear surface and both side surfaces, a second conductive material 711a_2 that forms the top end surfaces, and a first non-conductive material 711b.
The second module 712 may include a third conductive material 712a and a second non-conductive material 712b. Meanwhile,
The third module 713 may include a fourth conductive material 713a_1 that forms both side surfaces and the rear surface, a fifth conductive material 713a 2 that forms the top end surface, and a third non-conductive material 713b. Meanwhile,
According to an embodiment of the present disclosure, the second conductive material 711a_2 and the fifth conductive material 713a_2, which are joined to the top surfaces of the first module 711 and the third module 713, respectively, may function as antennas. The top end surface of the first non-conductive material 711b may include a recess (not illustrated) so as to expose a contact terminal (not illustrated) to be in contact with the second conductive material 711a_2. Similar to this construction, the top end surface of the third non-conductive material 713b may include a recess (not illustrated) so as to expose a contact terminal (not illustrated) to be in contact with the fifth conductive material 713a_2. In other words, according to an embodiment of the present disclosure, the second conductive material 711a_2 and the fifth conductive material 713a_2 may be fed with power from a printed circuit board (not illustrated) through contact terminals (not illustrated), respectively. Alternatively, the second conductive material 711a_2 and the fifth conductive material 713a_2 may be indirectly fed with power.
The first module 711 and the third module 713 of
Referring now to
In addition, according to the embodiment of the present disclosure, the housing 810 may further include a cover case 814 that is removably joined to the rear surface of the electronic device. The cover case 814 may be a battery cover. The cover case 814 may be formed of a conductive material.
The first conductive material 812a_1, the second conductive material 812a_2, and the cover case 814 may be physically separated from each other. The first conductive material 812a_1, the second conductive material 812a_2, and the cover case 814 may function as constituent elements of an antenna. For example, the first conductive material 812a_1 and the second conductive material 812a_2 of the second module 812 may be utilized as an antenna. The cover case 814 may be utilized so as to extend a ground of the antenna or the electronic device. When the first conductive material 812a_1, the second conductive material 812a_2, and the cover case 814 function as an antenna, power feeding may be performed directly or indirectly through a printed circuit board.
Since the other components of
Referring now to
Referring now to
Similarly to the first module 1011, the third module 1013 may include a fourth conductive material 1013a_1 that forms both side surfaces and the rear surface of the third module 1013, a fifth conductive material 1013a_2 that forms the top end surface, and a sixth conductive material 1013a_3. At least one of the fourth to sixth conductive materials 1013a_1, 1013a_2 and 1013a_3 of the third module 1013 may function as an antenna. According to another embodiment, however, at least two of the fourth to sixth conductive materials 1013a_1, 1013a_2, and 1013a_3 may be integrally formed.
The embodiment of the present disclosure illustrated in
The cover case 1014 of the electronic device may be formed of a conductive material as described above with reference to
Referring now to
The conductive material 1112a positioned on the BM region may be moved from a non-conductive material 1112b of a second module 1112, as illustrated in
The apparatuses and methods of the disclosure can be implemented in hardware, and in part as firmware or via the execution of software or computer code in conjunction with hardware that is stored on a non-transitory machine readable medium such as a CD ROM, a RAM, a floppy disk, a hard disk, or a magneto-optical disk, or computer code downloaded over a network originally stored on a remote recording medium or a non-transitory machine readable medium and stored on a local non-transitory recording medium for execution by hardware such as a processor, so that the methods described herein are loaded into hardware such as a general purpose computer, or a special processor or in programmable or dedicated hardware, such as an ASIC or FPGA. As would be understood in the art, the computer, the processor, microprocessor controller or the programmable hardware include memory components, e.g., RAM, ROM, Flash, etc., that may store or receive software or computer code that when accessed and executed by the computer, processor or hardware implement the processing methods described herein. In addition, it would be recognized that when a general purpose computer accesses code for implementing the processing shown herein, the execution of the code transforms the general purpose computer into a special purpose computer for executing the processing shown herein. In addition, an artisan understands and appreciates that a “processor”, “microprocessor”, “controller”, or “control unit” constitute hardware in the disclosure and appended claims that contain circuitry that is configured for operation. Under the broadest reasonable interpretation, the appended claims constitute statutory subject matter in compliance with 35 U.S.C. §101 and none of the elements are software per se. The term “module” as used in this application refers to the attachable structure of portions of the housing, and such components comprises statutory subject matter.
The definition of the term “unit” as referred to herein are to be understood as constituting hardware circuitry such as a CCD, CMOS, SoC, AISC, FPGA, a processor or microprocessor (a controller) configured for a certain desired functionality, or a communication module containing hardware such as transmitter, receiver or transceiver, or a non-transitory medium comprising machine executable code that is loaded into and executed by hardware for operation, in accordance with statutory subject matter under 35 U.S.C. §101 and do not constitute software per se.
The embodiments disclosed herein and shown in the drawings have been presented to help comprehension of the present disclosure, and are not intended to limit the scope of various embodiments of the present disclosure. Therefore, in addition to the embodiments disclosed herein, the scope of the various embodiments of the present disclosure should be construed to include all modifications or modified forms drawn based on the technical idea of the various embodiments of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0135898 | Oct 2014 | KR | national |