This Application claims priorities of Taiwan Patent Application No. 97128995, filed on Jul. 31, 2008, and Taiwan Patent Application No. 98116129, filed on May 15, 2009, the entirety of which are incorporated by reference herein.
1. Field of the Invention
The invention relates to an electronic device, and in particular, to an electronic device utilizing an electro-acoustic transducer as a speaker.
2. Description of the Related Art
Nowadays, most electronic devices require transmission of sound messages. Conventional speakers used in electronic devices to transmit sound are usually categorized into dynamic, electrostatic or piezoelectric speakers.
However, the conventional speakers (the dynamic speaker, the electrostatic speaker and the piezoelectric speaker) all require a rigid frame to fasten the speaker diaphragm. Other components disposed within the conventional speaker, such as magnets, coils and metallic plates and so on, are all made from hard materials which are non-flexible and quite heavy. In other words, non-flexibility and heavy weight of the components limit development to further miniaturize electronic devices requiring transmission of sound messages.
The invention provides an electronic device and an electro-acoustic transducer thereof. The electronic device comprises a main body and an electro-acoustic transducer carried by the main body. The electro-acoustic transducer comprises a first electret diaphragm, a second electret diaphragm and a plate. The first electret diaphragm generates vibrations according to a first electrical signal and the second electret diaphragm generates vibrations according to a second electrical signal. The plate comprises a plurality of holes formed thereon and is disposed between the first electret diaphragm and the second electret diaphragm.
The invention provides another electronic device. The electronic device comprises an electro-acoustic transducer. The electro-acoustic transducer comprises an electret diaphragm, a plate, at least one spacer and a decorative layer. The electret diaphragm generates vibrations according to an electrical signal. The plate comprises a plurality of holes formed thereon. The spacer is disposed between the electret diaphragm and the plate. The decorative layer is formed on the electret diaphragm.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
Referring to
In addition, the electronic device 10 can also be a sound poster 10′ (as shown in
Referring to
Each of the two electret diaphragms 110A, 110B comprises a film body 111 and an electrode layer 115. The film body 111 is made of material carrying electric charges or material charged with electric charges and has an inner surface 111I and an outer surface 1110. The electrode layer 115 comprises aluminum, chromium or other electrically conductive material and is formed on the outer surface 1110 of the film body 111.
In the embodiment, the film body 111 is made of tetrafluoroethylene (PTFE) and tetrafluoroethylene-co-hexafluoropropylene (FEP), and can be charged with electric charges so as to carry positive electric charges or negative electric charges. The electrode layer 115 is formed on the film body 111 by a hot embossing, evaporation deposition, sputtering, or spin coating process, but it is not limited thereto.
The plate 130 comprises an insulative layer 131, two electrode layers 133 and a plurality of holes A formed thereon and penetrating the insulative layer 131 and the two electrode layers 133. The insulative layer 131 is made of insulative material and has a first surface 131A and a second surface 131B. The first surface 131A is opposite to the second surface 131B. The two electrode layers 133 are respectively formed by coating electrically conductive material (eg. aluminum or chromium) on the first surface 131A and the second surface 131B of the insulative layer 131 and respectively face the film body 111 of the electret diaphragm 110A and the film body 111 of the electret diaphragm 110B.
The fringes of the two electret diaphragms 110A, 110B are connected to an outer frame F. With support by the outer frame F, the electret diaphragms 110A, 110B can be fully expanded. The plate 130 is disposed inside the outer frame F and between the two electret diaphragms 110A, 110B. In detail, the plate 130 is between the inner surface of the film body 111 of the electret diaphragm 110A and the inner surface of the film body 111 of the electret diaphragm 110. The spacers D are respectively disposed between the plate 130 and the two electret diaphragms 110A, 110B, and a distance is kept therebetween to separate the plate 130 and the two electret diaphragms 110A, 110B, thus maintaining a space for vibrations of the electret diaphragms 110A, 110B.
As shown in
In a variant embodiment, the electrode layers 133 on the first surface 131A and the second surface 131B of the insulative layer 131 can also connect to the ground (as shown in
Referring to
The fringes of the two electret diaphragms 110A, 110B connect to the outer frame F. With support by the outer frame F, the electret diaphragms 110A, 110B can be fully expanded. The plate 130 is disposed inside the outer frame F, between the two electret diaphragms 110A, 110B. In detail, the plate 130″ is between the inner surface of the film body 111 of the electret diaphragm 10A and the inner surface of the film body 111 of the electret diaphragm 110B. The spacers D are respectively disposed between the plate 130″ and the two electret diaphragms 110A, 110B, and a distance is kept therebetween to separate the plate 130″ and the two electret diaphragms 110A, 110B, thus maintaining a space for vibrations for the electret diaphragms 110A, 110B. In this embodiment, the spacers D and the plate 130 may be integrally formed as a single piece by any electrical conductive material (eg. gold, silver, copper, aluminum, chromium or Indium Tin Oxide), or the spacers D may be attached to the plate 130 by any adhesive means.
Referring to
The first electrical signal V1 and the second electrical signal V2 are sound signals (analog signals) having identical phases, and the third electrical signal V3 is a signal having a phase opposite to the phase of the first electrical signal V1 and the second electrical signal V2. In other words, when the first electrical signal V1 and the second electrical signal V2 are positive (e.g. +100V), the third electrical signal V3 is negative (eg. −100V), and when the first electrical signal V1 and the second electrical signal V2 are negative (e.g. −100V), the third electrical signal V3 is positive (e.g. +100V), such that the electrode layers 115 of the electret diaphragms 110A, 110B and the plate 130″ can generate potential differences. Thereby, the first electret diaphragm 110A vibrates according to the potential difference between the first electrical signal V1 and the third electrical signal V3 while the second electret diaphragm 110B vibrates according to the potential difference between the second electrical signal V2 and the third electrical signal V3.
It should be noted that, as shown in
The electret diaphragm is forced as F=C×E×ΔV, wherein C is the capacity between the electret diaphragm and the plate 130″, E is the intensity of the electric field between the electret diaphragm and the plate 130″, which is formed by a static charge distribution on the surface of the electret diaphragm, and ΔV is the potential difference between the electret diaphragm and the plate 130″. The multiplication of the above three factors results in a vibration force F to vibrate the electret diaphragm to generate sounds.
Additionally, because the film body 111 of the electret diaphragm 110A has positive electric charges carried thereon, and the film body 111 of the electret diaphragm 110B has negative electric charges carried thereon, when the potential difference between the first electrical signal V1 and the second electrical signal V2 is positive, the film body 111 of the electret diaphragm 110A is repulsed away from the plate 130″. Therefore, the electret diaphragm 110A vibrates upwards. Meanwhile, the film body 111 of the electret diaphragm 110B is attracted to the plate 130″. Therefore, the electret diaphragm 110B vibrates upwards as well. Contrarily, when the potential difference between the first electrical signal V1 and the second electrical signal V2 is negative, the film body 111 of the electret diaphragm 110A is attracted to the plate 130″. Therefore, the electret diaphragm 110A vibrates downwards. Meanwhile, the film body 111 of the electret diaphragm 110B is repulsed away from the plate 130″. Therefore, the electret diaphragm 110B vibrates downwards as well. As described, the vibrating directions of the electret diaphragms 110A and 110B are the same no matter what the potential difference between the first electrical signal V1 and the second electrical signal V2 is.
Referring to
Furthermore, if required, the electronic device 10 can comprises more than one electro-acoustic transducer, such as two electro-acoustic transducers 100, 100″, stacked together as shown in
As shown in
Referring to
The fringes of the two electret diaphragms 110A, 110B are respectively mounted on the first outer frame F1 and the second outer frame F2. With support by the first outer frame F1 and the second outer frame F2, the electret diaphragms 100A, 110B can be fully expanded. The first insulative sub-layer 1131 and the second insulative sub-layer 1132, made from insulative material, are respectively disposed within the first outer frame F1 and the second outer frame F2. The inner surfaces 131A′ of the first insulative sub-layer 1311 and the second insulative sub-layer 1312 face each other, and the outer surfaces 131B′ thereof respectively face the two electret diaphragms 110A, 110B, such that the spacers D′ formed on the outer surfaces 131B′ are distributed between the first insulative sub-layer 1311 and the electret diaphragm 110A, and between the second insulative sub-layer 1312 and the electret diaphragm 110B. As a result, the plate 130 and the two electret diaphragms 110A, 110B are separated to maintain a space for vibrations of the electret diaphragms 110A, 110B. At last, the first outer frame F1 and the second outer frame F2 are connected to complete assembly.
It should be noted that in the embodiment, the plate 130 further comprises a adhesive layer (not shown) between the inner surfaces 131A′ of the first insulative sub-layer 1311 and the second insulative sub-layer 1312 to connect the first insulative sub-layer 1311 and the second insulative sub-layer 1312.
Furthermore, as shown in
When the first insulative sub-layer 1311 is disposed within the first outer frame F1, the first extending portion 1371 of the first insulative sub-layer 1311 extends out of the first outer frame F1 via the first recess R1. When the second insulative sub-layer 1312 is disposed within the second outer frame F2, the second extending portion 1372 of the second insulative sub-layer 1312 extends out of the second outer frame F2 via the second recess R2. When the first outer frame F1 connects with the second outer frame F2, the first protrusion E1 of the first outer frame F1 connects with the second extending portion 1372 of the second insulative sub-layer 1312 to form a first electrical input terminal electrically connected to the electrode layer 115 of the electret diaphragm 110A and the electrode layer 133′ of the second insulative sub-layer 1312. The second protrusion E2 of the second frame F2 connects with the first extending portion 1371 of the first insulative sub-layer 1311 to form a second electrical input terminal electrically connected to the electrode layer 115 of the electret diaphragm 110B and the electrode layer 133′ of the first insulative sub-layer 1311.
The first electrical input terminal is input with a first electrical signal and transmits the first electrical signal to the electrode layer 115 of the electret diaphragm 110A and the electrode layer 133′ of the second insulative sub-layer 1312, and the second electrical input terminal is input with a second electrical signal opposite to the first electrical signal and transmits the second electrical signal to the electrode layer 115 of the electret diaphragm 110B and the electrode layer 133′ of the first insulative sub-layer 1311, so as to generate an electric field between the electrode of the electret diaphragms 110A, 110B and the electrode on the first and the second insulative sub-layers 1311, 1312 whereby making the electret diaphragms 110A, 110B to vibrate to produce the sound.
In other embodiments of the invention, the plate 130 as shown in
Moreover, because the electret diaphragms 110A, 110B are disposed on the exterior side of the electro-acoustic transducers 100, 100″, a decorative layer 120 is able to be disposed directly on the electro-acoustic transducers 100, 100″ to constitute a sound poster 101 (as shown in
The electro-acoustic transducers 100, 100″ of the electronic device 10 are mainly structured by layering of two electret diaphragms and the plate to form a sound unit. The electro-acoustic transducers 100, 100″, occupying small space and comprising flexibility, are best applied in a small-sized electronic device to replace the conventional speaker. In addition, the electret diaphragms of the electro-acoustic transducer are disposed with their electret surfaces (the inner surfaces charged with electric charges) facing inside to cover the plate. Thus, an enclosed space is formed thereby to prevent air particles and mist from entering into the electro-acoustic transducer which affect the electret properties of the electret diaphragms.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
97128995 A | Jul 2008 | TW | national |
98116129 A | May 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3711941 | Sessler et al. | Jan 1973 | A |
3980838 | Yakushiji et al. | Sep 1976 | A |
4041446 | Liebermann | Aug 1977 | A |
4160882 | Driver | Jul 1979 | A |
4246448 | Tam et al. | Jan 1981 | A |
6075867 | Bay et al. | Jun 2000 | A |
6496586 | Hayes et al. | Dec 2002 | B1 |
6931140 | Van Halteren et al. | Aug 2005 | B2 |
20090060233 | Liou et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
S51-032528 | Aug 1974 | JP |
50-090320 | Jul 1975 | JP |
S53-006637 | Jul 1976 | JP |
52-006522 | Jan 1977 | JP |
54-127317 | Oct 1979 | JP |
S58-120399 | Jul 1983 | JP |
64-071400 | Mar 1989 | JP |
2004-186732 | Jul 2004 | JP |
2006-174125 | Jun 2006 | JP |
2006-254391 | Sep 2006 | JP |
2007-104521 | Apr 2007 | JP |
2007-295059 | Nov 2007 | JP |
WO-0139544 | May 2001 | WO |
WO-2004062318 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100027818 A1 | Feb 2010 | US |