This application is related to co-pending application entitled “ELECTRONIC DEVICE AND LC SHUTTER WITH DIFFUSIVE REFLECTIVE POLARIZER”, filed on even date, having Ser. No. 12/028,092, inventors Zhuang et al., owned by instant Assignee and is incorporated herein by reference.
The present invention generally relates to electronic devices that employ liquid crystal shutters.
Image morphing capability is increasingly becoming an important design consideration in electronic devices. In the optical and imaging arts, “morphing” refers to the changing of one image to another. For example, electronic devices frequently employ “morphing user interfaces,” i.e., interfaces that change in appearance as a device's use changes. Such an interface is simpler and more intuitive to use since only the context-relevant functions are shown at any given time, with the interface elements that are not related to the current context being inactive and hidden. A simple example of a morphing user interface is a screen through which display content is visible in one state, such as an “on” state, and not visible in another state, such as an “off” state. In the “off” state, a user may see, for example, a reflection of the ambient light incident on the screen.
Several known morphing techniques can achieve a change from a transparent state to a specular reflective (i.e., mirror-like) state, such as a change from the content typically seen on a cellular telephone display or touch-sensitive keypad area to a mirror-like image. U.S. Pat. No. 6,574,044 (“the '044 patent”) describes a combination of a reflective polarizer and a colored dichroic polarizer to achieve colored looks with a liquid crystal (“LC”) display. This construction can achieve specular reflective colors, but not diffusive colors. One embodiment of the '044 patent also employs a diffusive adhesive to achieve diffusive colors, but this embodiment cannot achieve switching between a transparent state and a diffusive state because as long as the diffusive adhesive is present, all incoming light is diffused under all circumstances.
U.S. Pat. No. 6,184,955 describes an LC device including a specular reflective polarizer and a light scattering layer. Because the light scattering layer is not polarization-sensitive, however, this construction does not enable switching between a transparent state and a diffusive state.
U.S. Patent Publication 2004/0036821 describes an LC shutter including at least two LC cells and at least three polarizers. The LC shutter may include scattering layers and reflective layers. However, this construction only describes the use of scattering layers to suppress interference effects in the LC shutter. The scattering layers are not polarization-sensitive and thus do not enable switching between a transparent and a diffusive state. This construction is also cumbersome because it uses two LC cells in the LC shutter.
Other known morphing constructions use a specular or diffusive reflective polarizer between the LC shutter and a light source, such as a display, for “recycling” purposes. The LC shutter typically passes light polarized along one direction and absorbs light polarized along a different direction. Such absorption of “wrongly-polarized” light is wasteful. Accordingly, the specular or diffusive reflective polarizer reflects wrongly-polarized light emanating from the light source and prevents it from being absorbed by the LC shutter. Another reflector placed on the opposite side of the light source reflects the light back, with a different polarization or polarizations, and provides another opportunity for the light to be transmitted. Thus, if a diffusive reflective polarizer is used in such a construction, it only provides “recycling” capability and does not enable the LC shutter to switch between a transparent state and a diffusive state.
Other constructions do provide for switching between a transparent state and a diffusive state, but are not polarization-sensitive LC shutters and therefore produce lower image integrity, along with lower transmission in the transparent state. For example, U.S. Pat. Nos. 6,760,157 and 6,590,705 describe optical films that provide diffuse reflection. However, the film is not included within a construction having other polarization-sensitive elements to optimize image integrity and the degree of transmission in the transparent state. For example, the diffuse reflection may be obtained by applying a voltage directly to the film itself to control the degree to which it is transparent to or scattering to incoming light.
Accordingly, it is desirable to provide electronic devices having the ability to switch between a transparent state and a diffusive state in a size- and cost-efficient manner, and that are polarization-sensitive and provide high image integrity and high transmission in a transparent state. Other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
Briefly, an electronic device includes a display and an LC shutter. At least a portion of the LC shutter is operatively positioned over the display. In one example, the LC shutter provides switching between a diffusive state and a transparent state with high image integrity, and with high transmission in the transparent state. The diffusive state can be controlled to be a diffusive white state or a diffusive colored state, such as through the selective placement of a narrowband dichroic polarizer or narrowband reflective polarizer within the LC shutter to introduce color. In one embodiment, the electronic device further includes control logic operatively coupled to the LC shutter and operative to provide control signals to the LC shutter to effect the transparent state. When the control logic does not provide control signals to the LC shutter, the LC shutter operates in the diffusive state. The LC shutter includes a first dichroic polarizer, such as a broadband dichroic polarizer, a specular reflective polarizer, such as a broadband specular reflective polarizer, an LC cell, and an in-plane anisotropic diffuser, such as an in-plane anisotropic diffuser film. An in-plane anisotropic diffuser hereinafter means a diffuser in which at least 50 percent of light polarized in one direction is selectively diffusively transmitted (the remainder of such light being selectively diffusively reflected), while essentially all of the light polarized in the other direction is specularly transmitted. By way of example, the in-plane anisotropic diffuser may selectively diffusively transmit 60 percent of the light polarized in one direction, or any suitable percentage of such light. The LC cell is interposed between the first dichroic polarizer and the specular reflective polarizer. The in-plane anisotropic diffuser is interposed between the LC cell and the specular reflective polarizer.
In another embodiment, the LC shutter further includes a second dichroic polarizer that is a narrowband dichroic polarizer. In one embodiment, the second dichroic polarizer is interposed between the in-plane anisotropic diffuser and the specular reflective polarizer. In another embodiment, the second dichroic polarizer is interposed between the LC cell and the in-plane anisotropic diffuser.
In another embodiment, the LC shutter still further includes an additional dichroic polarizer, such as a broadband dichroic polarizer. The LC cell, the in-plane anisotropic diffuser, the specular reflective polarizer, and, if present, the second dichroic polarizer, are interposed between the first dichroic polarizer and the additional dichroic polarizer.
In an alternate embodiment, a diffusive reflective polarizer can be used in place of a combination of in-plane anisotropic diffuser and broadband specular reflective polarizer. Thus, the LC cell is placed between the first dichroic polarizer and the diffusive reflective polarizer. A diffusive reflective polarizer hereinafter means a polarizer in which essentially all of the light polarized in one direction is selectively diffusively reflected while essentially all of the light polarized in the other direction is selectively specularly transmitted. In another embodiment, a second dichroic polarizer that is a narrowband dichroic polarizer is interposed between the LC cell and the diffusive reflective polarizer.
Among other advantages, an LC shutter and a device including an LC shutter provide appealing visual effects such as switching between a transparent state and a diffusive state to change, for example, the color or visual appearance of, in one example, an exterior surface of a handheld device or other suitable device. As such, the LC shutter can switch between bright diffusive colors or bright diffusive white and a highly transparent state. As such, as applied to a device, the device can appear to be morphing from one color to a transparent state to provide different looks thereby enhancing user appeal.
The first dichroic polarizer 18 includes a first axis 26 and a second axis 28. The second dichroic polarizer 20 includes a first axis 30 and a second axis 32. The specular reflective polarizer 24 includes a first axis 34 and a second axis 36. The LC cell 22 includes a first substrate 38, a second substrate 40, and liquid crystal material 42. The LC cell 22 is interposed between the first dichroic polarizer 18 and the specular reflective polarizer 24. The LC cell 22 and specular reflective polarizer 24 are interposed between the first dichroic polarizer 18 and the second dichroic polarizer 20.
In operation, ambient light 44 is incident upon the first dichroic polarizer 18 when it reaches the LC shutter 14. The first dichroic polarizer 18 is generally a broadband dichroic polarizer. As is known in the art, a broadband polarizer is responsive to a continuous, wide range of electromagnetic frequencies, typically including all frequencies or colors within the range of visible light. As is further known in the art, a dichroic polarizer is substantially transparent to light polarized along a first axis of the dichroic polarizer, also known as a transmission axis or a transmissive axis, and substantially absorbs light polarized along a second axis of the dichroic polarizer that is different from the first axis. Accordingly, the first dichroic polarizer 18 transmits first polarized light 46 to the LC cell 22 that is substantially polarized along the first axis 26 of the first dichroic polarizer 18 and that is the same color as the ambient light 44.
As is known in the art, a voltage may be applied to the LC cell 22. If a voltage is applied to the LC cell 22, the liquid crystal material 42, and hence the LC cell 22, will pass the first polarized light 46 without rotating its polarization, thereby producing post-LC light 48. However, if a voltage is not applied to the LC cell 22, the liquid crystal material 42, and hence the LC cell 22, will pass the first polarized light 46 with a rotation, or “twist,” of its polarization to produce the post-LC light 48.
Accordingly, when a voltage is applied to the LC cell 22, post-LC light 48 that exits the LC cell 22 is substantially polarized in the same direction as the first axis 26 of the first dichroic polarizer 18. On the other hand, when no voltage is applied to the LC cell 22, the post-LC light 48 is substantially polarized in a different direction because of the polarization rotation effect of the LC cell 22.
The ambient light 44 is then transmitted to the specular reflective polarizer 24. The specular reflective polarizer 24 is typically a broadband specular reflective polarizer. As is known in the art, a broadband reflective polarizer, like a broadband dichroic polarizer, is responsive to a continuous, wide range of electromagnetic frequencies typically including all frequencies or colors within the range of visible light and is substantially transparent to light polarized along a first axis. However, unlike a broadband dichroic polarizer, a broadband reflective polarizer substantially reflects, instead of absorbs, light polarized along a second axis that is different from its first axis. Moreover, a broadband specular reflective polarizer substantially specularly reflects this light. That is, the reflection of this light produces a metallic or mirror-like appearance, as opposed to a situation in which light is dispersed upon reflection, also known as a diffusive reflection, such as the case of a shadow produced by the reflection of a person's face from a piece of white paper.
Accordingly, in the event that any components of post-LC light 48 are, at the time they enter the specular reflective polarizer 24, polarized along the first axis 30 of the specular reflective polarizer 24, the specular reflective polarizer 24 transmits post-specular reflective polarizer light 50 to the second dichroic polarizer 20 that is substantially polarized along the first axis 30 of the specular reflective polarizer 24, and that is the same color as the post-LC light 48.
In the event that any components of post-LC light 48 are, at the time they enter the specular reflective polarizer 24, polarized along the second axis 32 of the specular reflective polarizer 24, the specular reflective polarizer 24 specularly reflects those components.
The second dichroic polarizer 20 is generally a broadband dichroic polarizer. The second dichroic polarizer 20 is used to enhance the polarization effect of the LC shutter 14 during operation in the transparent state in view of the non-ideal responses of the above components of the LC shutter 14.
As will be recognized by one of ordinary skill in the art, when a voltage is applied to the LC cell 22, light coming from the display 12 and, if the electroluminescent or reflecting element 16 is present, light coming from the electroluminescent or reflecting element 16, may be transmitted through the LC shutter 14 in the opposite order of transmission as that described above because each of the components of the LC shutter 14 has the same response to light incident from either direction. As further recognized by one of ordinary skill in the art, the extent to which ambient light 44 may be transmitted through the LC shutter 14, and thus the extent to which light coming from the display 12 and light coming from the electroluminescent or reflecting element 16 may be transmitted through the LC shutter 14, will depend both upon the orientation of the first axes 26, 30, and 34 and second axes 28, 32, and 36 of each of the first dichroic polarizer 18, second dichroic polarizer 20, and specular reflective polarizer 24, respectively, and upon whether a voltage is applied to the LC cell 22 and if not, what angle of polarization rotation is introduced by the LC cell 22.
For example, in a situation where the first axes 26, 30, and 34 and second axes 28, 32, and 36 are all aligned with respect to one another, where the first axes 26, 30, and 34 are perpendicular to the second axes 28, 32, and 36, and where the LC cell 22 rotates the polarization of light by 90° in the absence of applied voltage, the prior art system of
If no voltage is applied to the LC cell 22, any components of ambient light 44 which are polarized along the second axis 28 of the first dichroic polarizer 18 are substantially absorbed, but any components of ambient light 44 which are polarized along the first axis 26 of the first dichroic polarizer 18 are substantially transmitted through the first dichroic polarizer 18 to produce an output of first polarized light 46. The first polarized light 46 then has its polarization rotated 90° by the LC cell 22 and outputted from the LC cell 22 as post-LC light 48. After transmission through the LC cell 22, the post-LC light 48 is substantially polarized along the second axis 36 of the specular reflective polarizer 24. Accordingly, the post-LC light 48 is substantially specularly reflected by the specular reflective polarizer 24, and not transmitted to the display 12.
Similarly, any components of light coming from the display 12 which are polarized along the first axis 26 of the second dichroic polarizer 20 are substantially transmitted therethrough, while any components of light coming from the display 12 which are polarized along the second axis 28 of the second dichroic polarizer 20 are substantially absorbed. Because the components polarized along the first axis 26 of the second dichroic polarizer 20 have their polarization rotated 90° when they reach the LC cell 22, they are then substantially absorbed by the first dichroic polarizer 18, and thus substantially no light from the display 12 is transmitted through the LC shutter 14.
Accordingly, the prior art system can achieve switching between a transparent state and a specular reflective state, but is unable to achieve switching between a transparent state and a diffusive state.
At least a portion of the LC shutter 204 is operatively positioned over the display 202. In a preferred embodiment, if the keypad portion 208 is included, at least a portion of the LC shutter 204 is further operatively positioned over the keypad portion 208. The control logic 206 is operatively coupled to the LC shutter 204 and operative to cause the LC shutter 204 to switch between a transparent state, as illustrated by the light depicted on the right portion of the figure, and a diffusive state, as illustrated by the light depicted on the left portion of the figure. For purposes of this disclosure, a transparent state is to be interpreted as a state in which the LC shutter 204 is substantially transparent with respect to incoming light, taking into account polarization imperfections of the LC shutter 204 as known in the art. Similarly, a diffusive state is to be interpreted as a state in which the LC shutter 204 is substantially diffusive with respect to incoming light, taking into account the polarization imperfections of the LC shutter 204.
When the LC shutter 204 is in the transparent state, ambient light 210 is substantially transmitted through the LC shutter 204. The ambient light 210 may be, for example, natural light, artificial light, or any suitable light in the environment of the LC shutter 204. Additionally, light from the display 202 and, if the keypad portion 208 is present, light from the keypad portion 208, is substantially transmitted through the LC shutter 204. When the LC shutter 204 is in the diffusive state, ambient light 210 is diffusely reflected by the LC shutter 204 and in some embodiments is also colored by the LC shutter 204, as described in detail below. Additionally, any light from the display 202 and the keypad portion 208 is substantially not transmitted through the LC shutter 204.
In a preferred embodiment, and as described in further detail below with respect to
Referring now to
The LC shutter 204 includes a first dichroic polarizer 300, a specular reflective polarizer 302, an LC cell 304, and a in-plane anisotropic diffuser 306. In further embodiments, and as described in detail below, the LC shutter 204 includes one or both of a second dichroic polarizer (not shown in
The first dichroic polarizer 300 includes a first (i.e., transmissive) axis 310 and a second (i.e., absorptive) axis 312. The first dichroic polarizer 300 may be made from, for example, an iodine complex, dichroic dyes, or any other suitable material. As discussed above, a dichroic polarizer is substantially transparent to light polarized along a first axis and substantially absorbs light polarized along a second axis that is different from the first axis. For purposes of this disclosure, an axis refers to any line in space of any orientation and is not limited to a line which defines, for example, a coordinate axis. In one embodiment, the first dichroic polarizer 300 is a broadband dichroic polarizer, such as that manufactured by Nitto Denko Corporation or Sumitomo Chemical Co., Ltd.
The specular reflective polarizer 302 includes a first (i.e., transmissive) axis 314 and a second (i.e., reflective) axis 316. The specular reflective polarizer 302 may be made from, for example, a polymer multi-layer material or any suitable material. For example, the specular reflective polarizer 302 may be the DBEF (Dual Brightness Enhancement Film) manufactured by 3M. In several embodiments, the specular reflective polarizer 302 is a broadband specular reflective polarizer.
The LC cell 304 is interposed between the first dichroic polarizer 300 and the specular reflective polarizer 302 and includes, for example, a first substrate 318 such as a top substrate, a second substrate 320 such as a bottom substrate, and liquid crystal material 322 interposed between the first substrate 318 and the second substrate 320. The first substrate 318 and second substrate 320 may be made from, for example, glass, polycarbonate, or cyclic polyolephine or any suitable polymer that is substantially transparent and of low birefringence. In the case of an applied voltage to the LC cell 304, such as through control signals 212, the liquid crystal material 322 passes incident light without rotating its polarization. However, when a voltage is not applied to the LC cell 304, the liquid crystal material 322 is operative to rotate the polarization of incident light while passing that incident light.
The in-plane anisotropic diffuser 306 is interposed between the LC cell 304 and the specular reflective polarizer 302. The in-plane anisotropic diffuser 306 includes a first axis 324 and a second axis 326. The in-plane anisotropic diffuser 306 may be, for example, an in-plane anisotropic diffuser film or any other suitable type of in-plane anisotropic diffuser.
In a preferred embodiment, the in-plane anisotropic diffuser 306 includes a matrix 400 and at least one domain 402 dispersed within the matrix 400. The in-plane anisotropic diffuser 306 is such that there is a refractive index match between the matrix 400 and the at least one domain 402 along a first axis 324 of the in-plane anisotropic diffuser 306, and a refractive index mismatch between the matrix 400 and the at least one domain 402 along a second axis 326 of the in-plane anisotropic diffuser 306 which is different from the first axis 324. In a preferred embodiment, the first axis and the second axis are substantially in the plane of the in-plane anisotropic diffuser 306. Further in a preferred embodiment and as illustrated in
The matrix 400 includes a polymer, such as Polymethylemethacrylate, and the at least one domain 402 includes a liquid crystal material. Preferably, the refractive index mismatch between the matrix 400 and the at least one domain 402 along the second axis 326 is greater than 0.05. For example, in a stretched PDLC film, the stretch aligns the at least one domain 402 so as to achieve the refractive index mismatch. In a PNLC film, the rubbed polyimide aligns the at least one domain 402 so as to achieve the refractive index mismatch.
Referring back to
The in-plane anisotropic diffuser 306 is transparent to incoming light polarized along the first axis 324, and scattering to, i.e., introduces a diffusive appearance to, incoming light polarized along the second axis 326. For purposes of this disclosure, “transparent to” and “scattering to” are to be interpreted as being substantially transparent to and substantially scattering to incoming light, respectively, taking into account imperfections of the in-plane anisotropic diffuser 306.
The majority of the components of post-LC light 330 which reach the in-plane anisotropic diffuser 306 and which are polarized along the second axis 326, in addition to being scattered, are transmitted. Namely, the in-plane anisotropic diffuser 306 scatters and reflect approximately 50% or less of the ambient light 210 that is incident upon it and polarized along the second axis. The remainder of the post-LC light 330 that is polarized along the second axis 326 is scattered and transmitted.
In a preferred embodiment, the first axes 310, 314, and 324 and second axes 312, 316, and 326 of each of the first dichroic polarizer 300, specular reflective polarizer 302, and in-plane anisotropic diffuser 306, respectively, are oriented as follows: the first axes 310, 314, and 324 are all aligned with one another, the second axes 312, 316, and 326 are all aligned with one another, and each of the first axes 310, 314, and 324 are substantially perpendicular to each of the second axes 312, 316, and 326. However, it is to be understood that any suitable arrangement of axes is contemplated. Moreover, in a preferred embodiment, the LC cell 304 rotates the polarization of light incident upon it by 90°, but it is to be understood that any suitable angle of rotation is contemplated.
Accordingly, in operation in accordance with the preferred embodiment, the LC shutter 204 is polarization-sensitive and switches effectively between a transparent state and a diffusive state with high image integrity, and with high transmission in the transparent state, by way of switching between the presence or absence of applied voltage to the LC cell 304. In the presence of applied voltage to the LC cell 304, any components of ambient light 210 which are polarized along the second axes 312 and 316 of the polarizers 300 and 302 and the second axis 326 of the in-plane anisotropic diffuser 306 of the LC shutter 204 are substantially absorbed. With no rotation of polarization by the LC cell 304, any components of ambient light 210 which are polarized along the first axes 310 and 314 of the polarizers 300 and 302 and the first axis 324 of the in-plane anisotropic diffuser 306 of the LC shutter 204 are substantially transmitted through the LC shutter 204. Furthermore, as discussed above with respect to
If no voltage is applied to the LC cell 304, any components of ambient light 210 which are polarized along the second axis 312 of the first dichroic polarizer 300 are substantially absorbed, but any components of ambient light 210 which are polarized along the first axis 310 of the first dichroic polarizer 300 are substantially transmitted through the first dichroic polarizer 300 as first polarized light 328, and then have their polarization rotated by the LC cell 304, producing post-LC light 330.
The post-LC light 330 is substantially polarized along the second axis 326 of the in-plane anisotropic diffuser 306. Therefore, in accordance with the discussion above regarding the response of the in-plane anisotropic diffuser 306 to light incident along its second axis 326, the in-plane anisotropic diffuser 306 partially scatters and reflects, and partially scatters and transmits, the post-LC light 330. The components of post-LC light 330 that are partially scattered and transmitted by the in-plane anisotropic diffuser 306, because they are polarized along the second axis 316 of the specular reflective polarizer 302, are substantially reflected by the specular reflective polarizer 302. The specular reflection of such components appears diffuse because the incident components are diffuse (as a result of being scattered by the in-plane anisotropic diffuser 306) before they reach the specular reflective polarizer 302.
Accordingly, when no voltage is applied to the LC cell 304, ambient light 210 is not transmitted to the display 202, but is instead diffusively reflected by the LC shutter 204. Similarly, any components of light coming from the display 202 which are polarized along the first axis 314 of the specular reflective polarizer 302 are substantially transmitted therethrough, while any components of light coming from the display 202 which are polarized along the second axis 316 of the specular reflective polarizer 302 are substantially reflected therefrom. Because the components polarized along the first axis 314 of the specular reflective polarizer 302 have their polarization rotated 90° when they reach the LC cell 304, they are then substantially absorbed by the first dichroic polarizer 300, and thus not transmitted through the LC shutter 204.
The LC shutter 204 of the present invention is therefore operative to achieve switching between a transparent state and a diffusive state. Because of the polarization effect of the LC shutter 204 that is introduced by the first dichroic polarizer 300 and the specular reflective polarizer 302, the LC shutter 204 of the present invention is able to achieve this switching with high image integrity and with high transmission in the transparent state.
Further embodiments of the LC shutter 204 are illustrated in
Accordingly, the LC shutter 204 operates as described above with respect to
Referring now to
As compared to the configuration of
Referring back to
As shown in
Referring now to
In this embodiment, the diffusive reflective polarizer 307 has higher reflectivity than the in-plane anisotropic diffuser 306 used in the embodiments shown and described with respect to
The diffusive reflective polarizer 307 includes a first axis 325 and a second axis 327. Unlike the in-plane anisotropic diffuser 306, the diffusive reflective polarizer 307 is backward scattering to, i.e., causes a diffusive reflection of, essentially all light polarized along the second axis 327, while transmitting essentially all light polarized along the first axis 325. Because of the increased reflectivity of the diffusive reflective polarizer 307, when the LC shutter 204 operates in the diffusive state, the diffusive reflective polarizer 307 scatters and reflects, as opposed to scatters and transmits, a greater amount of light incident upon it, thus allowing the LC shutter 204 to operate without the specular reflective polarizer 302 placed after the diffusive reflective polarizer 307.
The present invention still further contemplates an LC shutter made according to a method.
As shown in block 802, the method further includes attaching a second side of the LC cell 304 to a first side of an in-plane anisotropic diffuser, such as the in-plane anisotropic diffuser 306 described above with respect to, for example, the embodiments of
As shown in block 804, the method still further includes attaching a second side of the in-plane anisotropic diffuser 306 to a first side of a specular reflective polarizer, such as the specular reflective polarizer 302. The specular reflective polarizer 302 may be a broadband specular reflective polarizer or, in one embodiment, may be a narrowband specular reflective polarizer for coloring light and enabling a diffusive colored state, as discussed above with respect to, for example,
The method may still further include attaching the second side of the specular reflective polarizer 302 to a first side of an additional dichroic polarizer, such as the additional dichroic polarizer 308, as shown in block 806. The polarization effect of the LC shutter 204 may therefore be increased in view of the non-ideal responses of each of the above components of the LC shutter 204.
In one embodiment, block 802 includes block 808; namely, placing a second dichroic polarizer, such as the second dichroic polarizer 500, between the LC cell 304 and the in-plane anisotropic diffuser 306 for coloring light and enabling a diffusive colored state, as discussed above with respect to, for example,
In one embodiment, block 804 includes block 810; namely, placing a second dichroic polarizer, such as the second dichroic polarizer 500, between the in-plane anisotropic diffuser 306 and the specular reflective polarizer 302 for coloring light and enabling a diffusive colored state as discussed above with respect to, for example,
The method may be performed using any suitable manner of attachment including, for example, the use of PSAs (pressure sensitive adhesives), index-matching fluid, or any suitable chemical, mechanical, or other manner of optically coupling two elements together with substantially no air between them. The attachment is generally performed by one or more machines, but as recognized by one having ordinary skill in the art, may also be performed by a human or by a combination of a human and one or more machines.
With reference to the discussion of the embodiments of
As shown in block 902, the method includes attaching a second side of the LC cell 304 to a first side of a second dichroic polarizer, such as the second dichroic polarizer 500, for coloring light and enabling a diffusive colored state as described above with respect to, for example,
As shown in block 904, the method still further includes attaching a second side of the second dichroic polarizer 500 to a first side of a diffusive reflective polarizer, such as the diffusive reflective polarizer 307, as described above with respect to, for example,
The method may still further include block 906; namely, attaching the second side of the diffusive reflective polarizer 307 to a first side of an additional dichroic polarizer, such as the additional dichroic polarizer 708. The polarization effect of the LC shutter 204 may therefore be increased in view of the non-ideal responses of each of the above components of the LC shutter 204.
The method may be performed using any suitable manner of attachment as described above with respect to
Among other advantages, an LC shutter and a device including an LC shutter provide appealing visual effects such as switching between a transparent state and a diffusive state to change, for example, the color or visual appearance of, in one example, an exterior surface of a handheld device or other suitable device. As such, the LC shutter can switch between bright diffusive colors or bright diffusive white and a highly transparent state. As such, as applied to a device, the device can appear to be morphing from one color to a transparent state to provide different looks thereby enhancing user appeal.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3915548 | Opittek et al. | Oct 1975 | A |
4017848 | Tannas, Jr. | Apr 1977 | A |
4078257 | Bagley | Mar 1978 | A |
4422721 | Hahn et al. | Dec 1983 | A |
4462924 | Raynes | Jul 1984 | A |
4500173 | Leibowitz et al. | Feb 1985 | A |
4545648 | Shulman et al. | Oct 1985 | A |
4728936 | Guscott et al. | Mar 1988 | A |
4893903 | Thakar et al. | Jan 1990 | A |
5121234 | Kucera | Jun 1992 | A |
5225818 | Lee et al. | Jul 1993 | A |
5231381 | Duwaer | Jul 1993 | A |
5376948 | Roberts | Dec 1994 | A |
5600459 | Roy et al. | Feb 1997 | A |
5796454 | Ma | Aug 1998 | A |
5818615 | Abileah et al. | Oct 1998 | A |
5881377 | Giel et al. | Mar 1999 | A |
6047196 | Makela et al. | Apr 2000 | A |
6058164 | Ibuka et al. | May 2000 | A |
6103384 | Mario | Aug 2000 | A |
6144359 | Grave | Nov 2000 | A |
6150962 | Rossmann | Nov 2000 | A |
6184955 | Okumura | Feb 2001 | B1 |
6188379 | Kaneko | Feb 2001 | B1 |
6211931 | Fukao et al. | Apr 2001 | B1 |
6243080 | Molne | Jun 2001 | B1 |
6271835 | Hoeksma | Aug 2001 | B1 |
6310609 | Morgenthaler | Oct 2001 | B1 |
6325424 | Metcalfe et al. | Dec 2001 | B1 |
6327376 | Harkin | Dec 2001 | B1 |
6385139 | Yasuo et al. | May 2002 | B1 |
6470196 | Yamashita | Oct 2002 | B1 |
6574044 | Sahouani et al. | Jun 2003 | B1 |
6574487 | Smith et al. | Jun 2003 | B1 |
6590705 | Allen et al. | Jul 2003 | B1 |
6646697 | Sekiguchi et al. | Nov 2003 | B1 |
6662244 | Takahasi | Dec 2003 | B1 |
6674504 | Li et al. | Jan 2004 | B1 |
6704004 | Ostergård et al. | Mar 2004 | B1 |
6760157 | Allen et al. | Jul 2004 | B1 |
6768481 | Ozawa et al. | Jul 2004 | B2 |
6768586 | Sahouani et al. | Jul 2004 | B2 |
6813957 | Platz | Nov 2004 | B1 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6819380 | Wen et al. | Nov 2004 | B2 |
6842170 | Akins et al. | Jan 2005 | B1 |
6914874 | Kondo | Jul 2005 | B2 |
6968744 | Silverbrook et al. | Nov 2005 | B1 |
7106517 | Olczak | Sep 2006 | B2 |
7123945 | Kokubo | Oct 2006 | B2 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7139114 | Schmitz et al. | Nov 2006 | B2 |
7180672 | Olczak | Feb 2007 | B2 |
7191150 | Shao et al. | Mar 2007 | B1 |
7345671 | Robbin et al. | Mar 2008 | B2 |
7804563 | Nakamura | Sep 2010 | B2 |
20010036013 | Allen et al. | Nov 2001 | A1 |
20010043297 | Makoto | Nov 2001 | A1 |
20020090980 | Wilcox et al. | Jul 2002 | A1 |
20020123946 | Haworth et al. | Sep 2002 | A1 |
20020123962 | Bryman et al. | Sep 2002 | A1 |
20030020999 | Tsujimura et al. | Jan 2003 | A1 |
20030025679 | Taylor et al. | Feb 2003 | A1 |
20030054867 | Dowlat et al. | Mar 2003 | A1 |
20030058223 | Tracy et al. | Mar 2003 | A1 |
20040036680 | Davis et al. | Feb 2004 | A1 |
20040036821 | Paukshto et al. | Feb 2004 | A1 |
20040058718 | Yu | Mar 2004 | A1 |
20040073504 | Bryman et al. | Apr 2004 | A1 |
20040100598 | Masaya et al. | May 2004 | A1 |
20040104826 | Philipp | Jun 2004 | A1 |
20040189591 | Breuil | Sep 2004 | A1 |
20040218121 | Zhuang et al. | Nov 2004 | A1 |
20040246580 | Sahouani et al. | Dec 2004 | A1 |
20040265602 | Kobayashi et al. | Dec 2004 | A1 |
20050007339 | Sato | Jan 2005 | A1 |
20050018106 | Wang et al. | Jan 2005 | A1 |
20050020316 | Mahini | Jan 2005 | A1 |
20050020325 | Enger et al. | Jan 2005 | A1 |
20050030048 | Bolender et al. | Feb 2005 | A1 |
20050030292 | Diederiks | Feb 2005 | A1 |
20050064913 | Kim | Mar 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050093767 | Lu et al. | May 2005 | A1 |
20050114825 | Leung et al. | May 2005 | A1 |
20050134549 | Kamiya et al. | Jun 2005 | A1 |
20050171901 | Rosenblatt et al. | Aug 2005 | A1 |
20050243069 | Yorio et al. | Nov 2005 | A1 |
20050264190 | Park et al. | Dec 2005 | A1 |
20050266891 | Mullen | Dec 2005 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060038937 | Kaneko et al. | Feb 2006 | A1 |
20060046792 | Hassemer et al. | Mar 2006 | A1 |
20060080236 | Welker et al. | Apr 2006 | A1 |
20060146012 | Arneson et al. | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060166702 | Dietz et al. | Jul 2006 | A1 |
20060181662 | Kameyama et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060266640 | Halsey et al. | Nov 2006 | A1 |
20060277472 | Yodo et al. | Dec 2006 | A1 |
20060290871 | Harada | Dec 2006 | A1 |
20070030438 | Chiang | Feb 2007 | A1 |
20070052689 | Tak | Mar 2007 | A1 |
20070075965 | Huppi et al. | Apr 2007 | A1 |
20070097595 | Radivojevic et al. | May 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070164986 | Jeong et al. | Jul 2007 | A1 |
20070273662 | Lian et al. | Nov 2007 | A1 |
20080013174 | Allen et al. | Jan 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080169944 | Howarth et al. | Jul 2008 | A1 |
20080204417 | Pierce et al. | Aug 2008 | A1 |
20080204418 | Cybart et al. | Aug 2008 | A1 |
20080204428 | Pierce et al. | Aug 2008 | A1 |
20080204463 | Cybart et al. | Aug 2008 | A1 |
20080207254 | Pierce et al. | Aug 2008 | A1 |
20080211734 | Huitema et al. | Sep 2008 | A1 |
20080266244 | Bai et al. | Oct 2008 | A1 |
20080266500 | Nimura | Oct 2008 | A1 |
20080291169 | Brenner et al. | Nov 2008 | A1 |
20080309589 | Morales | Dec 2008 | A1 |
20080316397 | Polak et al. | Dec 2008 | A1 |
20090042619 | Pierce et al. | Feb 2009 | A1 |
20090046072 | Emig et al. | Feb 2009 | A1 |
20090161059 | Emig et al. | Jun 2009 | A1 |
20090201447 | Zhuang et al. | Aug 2009 | A1 |
20090225057 | Polak et al. | Sep 2009 | A1 |
20090231283 | Polak et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
1341029 | Sep 2003 | EP |
1467536 | Oct 2004 | EP |
2348039 | Sep 2000 | GB |
2359178 | Aug 2001 | GB |
6029275 | Feb 1994 | JP |
8063271 | Mar 1996 | JP |
2000098386 | Apr 2000 | JP |
2002049461 | Feb 2002 | JP |
2003101622 | Apr 2003 | JP |
2005099470 | Apr 2005 | JP |
2005100186 | Apr 2005 | JP |
2005352987 | Dec 2005 | JP |
2006091486 | Apr 2006 | JP |
2006243658 | Sep 2006 | JP |
2006284757 | Oct 2006 | JP |
20000007200 | Feb 2000 | KR |
20020025646 | Apr 2002 | KR |
20040019677 | Mar 2004 | KR |
100652767 | Nov 2006 | KR |
20060134659 | Dec 2006 | KR |
20070109603 | Nov 2007 | KR |
9732223 | Jul 1997 | WO |
9732223 | Sep 1997 | WO |
0113209 | Feb 2001 | WO |
0129148 | Apr 2001 | WO |
0129148 | Apr 2001 | WO |
WO 0231807 | Apr 2002 | WO |
03104884 | Dec 2003 | WO |
2006094308 | Sep 2006 | WO |
2006116145 | Nov 2006 | WO |
2006123294 | Nov 2006 | WO |
2007063809 | Jun 2007 | WO |
2007081318 | Jul 2007 | WO |
20070081318 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090201446 A1 | Aug 2009 | US |