This application claims priority under 35 U.S.C §119 to Taiwan patent application, TW 102112173, filed on Apr. 3, 2013, the disclosure of which is incorporated herein by reference.
The present disclosure relates generally to an audio-capable electronic device.
A consumer electronic device, such as a personal computer, cell phone, and the like, is typically equipped to playback audio through external speakers connected to the device. The device may also be connected to an external microphone to record audio from a user. Typically, the device requires additional circuitry to detect the presence of the external microphone. Such additional circuitry disadvantageously occupies valuable printed circuit board (PCB) real estate in a consumer market that demands that electronic devices be made ever smaller and cheaper.
According to an embodiment, an electronic device is configured to automatically detect whether an external microphone is connected to the electronic device. The device includes a headset jack and an external microphone contact. The device also includes an external microphone signal path connected to the external microphone contact, and a headset detector to detect whether a headset plug is plugged into the headset jack. An audio processor, connected to the headset detector and the external microphone signal path, is configured to select an audio signal received from the external microphone signal path if the headset detector detects that a headset plug is plugged into the headset jack. The processor module is further configured to record the selected audio signal, to produce a recorded audio signal, and determine if an external microphone is connected to the external microphone contact based on the recorded audio signal.
Embodiments are described herein in conjunction with the accompanying drawings, in which:
A headset 104 depicted in
Electronic device 102 includes a housing 106 to house the following device circuits/modules: an audio jack 110 (simply referred to as a “jack 110”) to receive an audio plug (simply referred to as a “plug”) from external audio equipment; a headset detector 112 to detect whether the plug is plugged into jack 110 and produce a corresponding headset detect signal 114; an internal microphone 118 to receive audio from an external source, such as a user of electronic device 102; and an audio processor 120 to process audio signals and control electronic device 102 in accordance with techniques described herein.
Audio processor 120 includes an audio signal processor 122, such as a coder/decoder or “codec,” a central processor unit (CPU) or “processor” 140, and a memory 142. Memory 142 may comprise a computer readable storage medium encoded with computer executable instructions that, when executed by processor 140, cause the processor to perform operations described herein. Codec 122 receives headset detect signal 114 and processes audio signals based on the headset detect signal, i.e., based on whether the head set detect signal indicates that a plug is plugged into device jack 110. Codec 122 (i) receives an audio signal from internal microphone 118 over an internal microphone path 124, (ii) receives an audio signal over an external audio path 126 that may or may not be connected to an external microphone, and (iii) provides left and right speaker channel audio signals (L CHANNEL and R CHANNEL) to left and right speaker channel signal paths 130 and 128, respectively. Codec 122 may include digital components to process audio signals in a digital domain, i.e., digitized audio signals, audio components to process the audio signals in an analog domain, or a combination thereof, as would be appreciated by one having ordinary skill in the relevant arts.
As mentioned above, headset detector 112 is configured to detect whether a plug, such as headset plug P, is plugged into device jack 110. It is to be understood that headset detector 112 may also detect plugs from other types of external audio equipment, such as external speakers and/or external microphones, which are not necessarily associated with a headset. Thus, the term “headset detector” is to be construed broadly so as to apply to the detection of such other types of external audio equipment. At a high-level, headset detector 112 includes voltage divider circuitry that interacts with jack 110 and plug P to drive headset detect signal 114 to a first voltage (e.g., a relatively high voltage) when plug P is plugged into jack 110 and a second voltage (e.g., a relatively low voltage) when plug P is not plugged into the jack. The first and second voltages respectively indicate to codec 122 the presence and absence of plug P in jack 110. The arrangement of plug P, jack 110, and headset detector 112 depicted in
Plug P comprises a substantially cylindrical shaft including electrical contacts M, G, R, and L respectively connected to external microphone EXT MIC, a ground line, right speaker RS, and left speaker LS of headset 104. Plug contacts M, G, R, and L are arranged in series from left-to-right in the order M-G-R-L, as depicted in
Correspondingly, headset jack 110 comprises a substantially cylindrical receptacle to receive the plug P and that includes electrical pins or contacts M, G, R, and L respectively connected to external microphone path 126, a ground rail, right channel path 128, and left channel path 130 of electronic device 102. Jack contacts M, G, R, and L are arranged in a staggered relationship with respect to each other from left-to-right as depicted in
Device jack 110 also incorporates an electrical contact H of headset detector 112 that is aligned with but slightly separated from jack contact L so as to form a normally open circuit with contact L when plug P is not plugged into jack 110. Thus, the headset detection embodiment of depicted in
Headset detector 112 further includes the following components: a resistor R1 connected between a voltage rail VDD of device 102 and a node 150 that supplies/generates headset detect signal 114; a resistor R2 connected between node 150 and contact H; a resistor R3 connected between left channel speaker path 130 and the ground rail of device 102; a resistor R4 connected between right channel speaker path 128 and the ground rail of device 102.
When plug P is not plugged into jack 110, node 150/headset detect signal 114 is pulled-up to voltage VDD through resistor R1 because contact H is open (i.e., not connected) with respect to jack contact L. The relatively high voltage (VDD) of headset detect signal 114 indicates to codec 122 that plug P is not plugged into jack 110, i.e., that headset 104 is not detected.
On the other hand, when plug P is plugged into jack 110, then jack contact L is electrically connected to contact H by plug contact L to complete a circuit from contact H to the ground rail of device 104 through resistor R3. Thus, node voltage 150/headset detect signal 114 is pulled down from relatively high voltage VDD (in the absence of plug P) to a relatively low voltage equal to VDD×(R2+R3)/(R1+R2+R3). The relatively low voltage of headset detect signal 114 indicates to codec 122 that plug P is plugged into jack 110, i.e., headset 104 is detected.
Codec 122 controls switches 204, 206 responsive to headset detect signal 114. Specifically, codec 122 opens and closes switches 204, 206 to connect respective audio paths 126, 124 to, and disconnect the respective audio paths from, the input of variable gain stage 208. In other words, a closed switch (204 or 206) passes an audio signal on the respective audio path (126 or 124) to the input of variable gain stage 208, and the respective path is said to be “enabled.” In contrast, an open switch (204 or 206) disconnects an audio signal on the respective audio path (126 or 124) from the input of gain stage 208, and the respective path is said to be “disabled.” Codec 122 selectively opens and closes switches 204 and 206 in a mutually exclusive manner so that when external microphone path 126 is enabled (connected), internal microphone path 124 is disabled (disconnected), and vice versa.
Variable gain stage 208 amplifies the audio signal provided to its input by the enabled one of paths 126, 124, and provides the amplified signal to record module 210 and processor 140. Responsive to headset detect signal 114, codec 122 causes record module 210 to record the amplified audio signal output by variable gain stage 208 for a predetermined period of time, to produce a recorded audio signal. Record module 210 provides the recorded audio signal to processor 140. The arrangement of switches 204, 206 and variable gain stage 208 depicted in
Initially, codec 122 enables internal microphone path 124, disables external microphone path 126, sets a gain of variable gain stage 208 to a default gain (e.g., half-way between available minimum and maximum gains of the variable gain stage), and disables record module 210. In this initial configuration, codec 122 amplifies an internal microphone signal from internal microphone path 124 and passes the amplified audio signal to processor 140.
At 305, headset detector 112 detects whether a plug (e.g., plug P) is plugged into jack 110. If not, operation 305 repeats. If a plug is detected, flow proceeds to 310.
At 310, codec 122 disables internal microphone path 124, enables external microphone path 126, increases the gain of variable gain stage 208 from the default to the maximum gain, and enables record module 210 to record the amplified audio signal originating from enabled external microphone path 126 for a predetermined time period, to produce a recorded audio signal. The predetermined time period may be any suitable time period, such as between 1 and 20 milliseconds; however, other time periods are possible. Record module 210 provides the recorded audio signal to processor 140. Codec 122 then disables record module 210 so that the record module does not continue to record audio signals.
At 315, processor 140 determines whether an external microphone is connected to jack 110 (contact M) based on the recorded audio signal. Processor 140 communicates its determination, i.e., that an external microphone is connected, or, alternatively, that an external microphone is not connected, to codec 122.
If it is determined at 315 that an external microphone is connected, then flow proceeds to 320.
At 320, codec 122 decreases the gain of variable gain stage 208 from the maximum to the default gain, and normal codec processing continues, i.e., variable gain stage 208 provides the amplified audio signal to processor 140.
If it is determined at 315 that an external microphone is not connected, then flow proceeds to 325. At 325, codec 122 disables external microphone path 126, enables internal microphone path 124, and decreases the gain of variable gain stage 208 from the maximum gain to the default gain, and normal codec processing continues.
At 705, processor 140 determines at least one metric related to the recorded audio signal, such as a power level (e.g., an average power level), a maximum amplitude, or a combination thereof. At 710, processor 140 compares the determined metric (e.g., power level) to predetermined threshold (e.g., threshold power level).
At 715, processor 140 determines that an external microphone is connected if the determined metric is equal to or greater than the predetermined threshold.
At 720, processor 140 determines that an external microphone is not connected if the determined metric is below the threshold.
The predetermined threshold used in method 700 is set to distinguish between the recorded audio produced when an external microphone drives external microphone path 126 and the recorded audio produced in the absence of the external microphone. In the absence of the external microphone, the recorded audio captures/represents only amplified quiescent circuit noise coupled onto external microphone path 126. On the other hand, when an external microphone is connected to external microphone path 126, the microphone drives an audio signal onto the path, and the recorded audio represents/captures an amplified version of that audio signal. An amplitude/power level of the amplified quiescent circuit noise is substantially less than an amplitude/power level of the amplified audio from the external microphone. In an embodiment, the predetermined threshold used in method 700, which may be determined empirically, is set above the expected amplitude/power level of the amplified quiescent circuit noise and below or equal to the expected amplitude/power level of the amplified audio signal from the external microphone.
From the above description, it can be seen that electronic device 102 advantageously uses existing circuit components, e.g., codec 122 and processor 140, to detect whether an external microphone is connected to the electronic device and to configure the device accordingly. Therefore, no additional circuitry and corresponding circuit board space is required to perform these operations.
The above description is intended by way of example only.
Number | Date | Country | Kind |
---|---|---|---|
102112173 A | Apr 2013 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7187775 | Fujita | Mar 2007 | B2 |
9025785 | Ohtsuka | May 2015 | B2 |
20130320993 | Mehrabi | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140301562 A1 | Oct 2014 | US |