The present invention relates to the field of enclosures for electronic devices, and, more specifically, to an electronic-device case providing the electronic device with additional capabilities.
Mobile computer devices have enjoyed increased usage for both personal and business purposes. Businesses have gravitated to the use of mobile computer devices for their ease of use and their ability to travel with a mobile workforce. For example, mobile computer devices may be distributed among workers in a warehouse setting for use in different areas of the warehouse. A worker might use a mobile computer device to record inventory by using the mobile computer device to read a code symbol (e.g., barcode) on the inventory item. The same worker might then use the mobile computer device to run an application that manages the inventory. This versatility is a primary attraction of these mobile computer devices, such as tablet computers and smartphones.
Use of a mobile computer device in a work setting can present unique problems. Because these devices typically require two hands to operate, the user may find it difficult to perform certain tasks with a mobile computer device. For example, to scan a code symbol, the user often needs to manipulate the object (e.g., a package) having a barcode while performing a scan. Since both of the user's hands are occupied with the mobile computer device (e.g., one hand holding the device and the other hand manipulating the controls, such as a touch screen), there is no free hand to manipulate the object.
Therefore, a need exists for an apparatus that will allow for one-handed operation of an electronic device.
Accordingly, in one aspect, the present invention embraces a handle for an electronic-device case. The handle includes a hand strap and a switch for generating a signal. The switch is integral with the hand strap.
In an exemplary embodiment, the handle according to the present invention includes a connector for affixing the hand strap to the electronic-device case.
In another exemplary embodiment, the handle according to the present invention includes a connector that is a rotating connector that permits the electronic-device case to rotate with respect to the hand strap.
In yet another exemplary embodiment, the handle according to the present invention includes a connector that is a swivel-mount connector that permits the electronic-device case to swivel with respect to the hand strap.
In another exemplary embodiment, the handle according to the present invention includes a switch that is positioned on, or otherwise integrated into, the connector.
In another exemplary embodiment, the handle according to the present invention includes a switch that is positioned on, or otherwise integrated into, the hand strap.
In another exemplary embodiment, the handle according to the present invention includes a switch that is positioned on, or otherwise integrated into, the electronic-device case.
In yet another exemplary embodiment, the handle according to the present invention includes a switch that is adapted for communicative connection with the electronic-device case.
In another exemplary embodiment, the handle according to the present invention includes a switch that is adapted for communicative connection with a computer, such as a computer positioned within the electronic-device case.
In another aspect, the present invention embraces an electronic-device casing assembly. In an exemplary embodiment, the electronic-device casing assembly includes an electronic-device case for holding a mobile computer device. The electronic-device casing assembly also includes a hand strap for securing a user's hand to the electronic-device case. The hand strap is connected (e.g., rotatably connected) to the electronic-device case. The electronic-device casing assembly also includes a switch for generating a signal. The switch is configured for operation by the user's hand. The electronic-device casing assembly is adapted to communicate with the mobile computer device.
In another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a connector for affixing the hand strap to the electronic-device case.
In yet another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a connector that permits the electronic-device case to rotate and/or swivel with respect to the hand strap.
In still another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a switch that is positioned on, or otherwise integrated into, the connector.
In another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a switch that is positioned on, or otherwise integrated into, the hand strap.
In yet another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a switch that is positioned on, or otherwise integrated into, the electronic-device case.
In another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a switch that is communicatively connected to the electronic-device case.
In yet another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a switch that is adapted for communicative connection with the mobile computer device, such as a mobile computer device positioned within the electronic-device case.
In still another aspect, the invention embraces an electronic-device casing assembly that includes an electronic-device case for securing a mobile compute device. The electronic-device casing assembly also includes a finger support positioned on, or otherwise integrated into, the electronic-device case to facilitate one-handed operation of the electronic-device casing assembly and the mobile computer device. The finger support includes a first signal-generating switch, a second signal-generating switch, and a finger rest positioned between the first signal-generating switch and the second signal-generating switch. The electronic-device casing assembly is adapted to communicate with the mobile computer device.
In an alternative exemplary embodiment, the electronic-device casing assembly according to the present invention includes a hand strap for securing a user's hand to the electronic-device case. The hand strap is connected to the electronic-device case.
In yet another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a connector for affixing the hand strap to the electronic-device case.
In another exemplary embodiment, the electronic-device casing assembly according to the present invention includes a connector that permits the electronic-device case to rotate and/or swivel with respect to the hand strap.
In yet another exemplary embodiment, the electronic-device casing assembly according to the present invention includes an arm support (e.g., an arm loop) for securing a user's arm to the electronic-device casing assembly so as to position the user's hand upon the electronic-device case and the user's fingers near the finger support.
In another exemplary embodiment, the electronic-device casing assembly according to the present invention is configured such that the first signal-generating switch and/or the second signal-generating switch are communicatively connected to the electronic-device case.
In another exemplary embodiment, the electronic-device casing assembly according the present invention is configured such that the first signal-generating switch and/or the second signal-generating switch are adapted for communicative connection with the mobile computer device, which mobile computer device may be positioned within the electronic device case.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces a handle for an electronic-device case. Reference is now made to
In an exemplary embodiment, the handle 10 may include a connector 30 for affixing the hand strap 20 to the electronic-device case 15. Typically, the connector 30 is a mechanical connection that allows the hand strap 20 to be moveably connected to the electronic-device case 15. For example, the connector 30 may be a rotating connector that permits the electronic-device case 15 to rotate with respect to the hand strap 20. This rotation feature would allow the user to rotate the mobile-computer device housed within the electronic-device case 15 into a landscape or portrait orientation without having to reposition their hand within the hand strap 20. As another example, the connector 30 may be a swivel-mount connector that permits the electronic-device case 15 to swivel with respect to the hand strap 20. The swivel action would allow the user to adjust the screen angle (e.g., tilt the screen horizontally or vertically) as desired without having to reposition their hand within the handle 10.
In an alternative exemplary embodiment, the switch 25 is positioned on, or is otherwise integrated into, the connector 30. Alternatively, the switch 25 may be positioned on, or otherwise integrated into, the electronic-device case 15. Whether the switch 25 is positioned on the connector 30 or on the electronic-device case 15, the switch 25 is positioned such that it may be activated by the user's hand while the hand is secured to the handle 10. This allows for the user to hold the device with the handle 10 using the same hand that activates the switch 25, thereby permitting one-handed operation.
The signal generated by the switch 25 typically initiates a user command. For example, the switch 25 may be activated by the user to initiate the scanning of a code symbol (e.g., a barcode). Typically, the switch 25 is adapted for communicative connection with the electronic-device case 15, which electronic-device case typically retransmits the signal to a mobile-computer device (e.g., tablet computer, smartphone), which is typically positioned within the electronic-device case 15. As an alternative example, the switch 25 is adapted for communicative connection with a mobile-computer device. The connection between the switch 25 and the electronic-device case 15 or the switch 25 and the mobile-computer device may be wired or wireless (e.g., Bluetooth, infrared).
In another aspect, the disclosure embraces an electronic-device casing assembly. Referring now to
In an exemplary embodiment, the electronic-device casing assembly 50 according to the present disclosure includes a connector 30 for affixing the hand strap 20 to the electronic-device case 15. Typically, the connector 30 permits the electronic-device case 15 to rotate and/or swivel with respect to the hand strap 20. The switch 25 may be positioned on, or otherwise integrated into, the hand strap 20, the connector 30 or the electronic-device case 15. The switch 25 may be communicatively connected to the electronic-device case 15, or the switch 25 may be adapted for direct or indirect communicative connection with the mobile computer device. In other words, the signal from the switch 25 may be transmitted directly to the mobile computer device (e.g., via a wired or wireless connection), or the signal may first pass through the electronic-device case 15 before being relayed on to the mobile computer device.
In another aspect, the disclosure embraces an electronic-device casing assembly 50 that enables one-handed operation of a mobile computer device while inhibiting accidental user selection. Referring now to
The electronic-device casing assembly 50 also includes a finger rest 70. The finger rest 70 is an area on the electronic-device casing assembly 50 that does not have any trigger or switch such that positioning of the user's fingers on the finger rest does not activate any trigger or switch. The finger rest is positioned between the first signal-generating switch 60 and the second signal-generating switch 65, thereby permitting a user to position one or more inner fingers (e.g., middle finger and ring finger) on the finger rest 70 without inadvertently activating a switch. In this way, the user may stabilize the electronic-device casing assembly 50 with at least one finger positioned on the finger rest in between the first signal-generating switch 60 and the second signal-generating switch 65, while still being able to operate (e.g., manipulate) the first signal-generating switch 60 and the second signal-generating switch 65 with the user's outside fingers (e.g., small finger and pointer finger). The finger rest 70 may be a raised portion on the electronic-device case 15 as shown in
Referring now to
Referring now to
To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127; U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,294,969; U.S. Pat. No. 8,408,469; U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,381,979; U.S. Pat. No. 8,408,464; U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,322,622; U.S. Pat. No. 8,371,507; U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,448,863; U.S. Pat. No. 8,459,557; U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712; U.S. Pat. No. 8,479,992; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2012/0318869; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0075464; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2010/0225757; U.S. patent application Ser. No. 13/347,219 for an OMNIDIRECTIONAL LASER SCANNING BAR CODE SYMBOL READER GENERATING A LASER SCANNING PATTERN WITH A HIGHLY NON-UNIFORM SCAN DENSITY WITH RESPECT TO LINE ORIENTATION, filed Jan. 10, 2012 (Good); U.S. patent application Ser. No. 13/347,193 for a HYBRID-TYPE BIOPTICAL LASER SCANNING AND DIGITAL IMAGING SYSTEM EMPLOYING DIGITAL IMAGER WITH FIELD OF VIEW OVERLAPPING FIELD OF FIELD OF LASER SCANNING SUBSYSTEM, filed Jan. 10, 2012 (Kearney et al.); U.S. patent application Ser. No. 13/367,047 for LASER SCANNING MODULES EMBODYING SILICONE SCAN ELEMENT WITH TORSIONAL HINGES, filed Feb. 6, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a LASER SCANNING BAR CODE SYMBOL READING SYSTEM HAVING INTELLIGENT SCAN SWEEP ANGLE ADJUSTMENT CAPABILITIES OVER THE WORKING RANGE OF THE SYSTEM FOR OPTIMIZED BAR CODE SYMBOL READING PERFORMANCE, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/432,197 for a LASER SCANNING SYSTEM USING LASER BEAM SOURCES FOR PRODUCING LONG AND SHORT WAVELENGTHS IN COMBINATION WITH BEAM-WAIST EXTENDING OPTICS TO EXTEND THE DEPTH OF FIELD THEREOF WHILE RESOLVING HIGH RESOLUTION BAR CODE SYMBOLS HAVING MINIMUM CODE ELEMENT WIDTHS, filed Mar. 28, 2012 (Havens et al.); U.S. patent application Ser. No. 13/492,883 for a LASER SCANNING MODULE WITH ROTATABLY ADJUSTABLE LASER SCANNING ASSEMBLY, filed Jun. 10, 2012 (Hennick et al.); U.S. patent application Ser. No. 13/367,978 for a LASER SCANNING MODULE EMPLOYING AN ELASTOMERIC U-HINGE BASED LASER SCANNING ASSEMBLY, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects, filed May 15, 2012; U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/867,386 for a Point of Sale (POS) Based Checkout System Supporting a Customer-Transparent Two-Factor Authentication Process During Product Checkout Operations, filed Apr. 22, 2013 (Cunningham et al.); U.S. patent application Ser. No. 13/888,884 for an Indicia Reading System Employing Digital Gain Control, filed May 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/895,616 for a Laser Scanning Code Symbol Reading System Employing Multi-Channel Scan Data Signal Processing with Synchronized Digital Gain Control (SDGC) for Full Range Scanning, filed May 16, 2013 (Xian et al.); U.S. patent application Ser. No. 13/897,512 for a Laser Scanning Code Symbol Reading System Providing Improved Control over the Length and Intensity Characteristics of a Laser Scan Line Projected Therefrom Using Laser Source Blanking Control, filed May 20, 2013 (Brady et al.); U.S. patent application Ser. No. 13/897,634 for a Laser Scanning Code Symbol Reading System Employing Programmable Decode Time-Window Filtering, filed May 20, 2013 (Wilz, Sr. et al.); U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); and U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.).
To supplement the present disclosure, this application incorporates entirely by reference U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.).
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7764488 | Calvarese | Jul 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550317 | Hyseni | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8690210 | May | Apr 2014 | B1 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8887970 | Tsai et al. | Nov 2014 | B2 |
20030213822 | Lautner | Nov 2003 | A1 |
20040226973 | Kao | Nov 2004 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080054039 | Wulff et al. | Mar 2008 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090219677 | Mori et al. | Sep 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100296235 | Takemasa et al. | Nov 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110240830 | Alemozafar et al. | Oct 2011 | A1 |
20110267748 | Lane et al. | Nov 2011 | A1 |
20110279959 | Lopez | Nov 2011 | A1 |
20110303709 | Wizikowski | Dec 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120138685 | Qu et al. | Jun 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193407 | Barten | Aug 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228346 | Huang | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130056285 | Meagher | Mar 2013 | A1 |
20130070322 | Fritz et al. | Mar 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200158 | Feng et al. | Aug 2013 | A1 |
20130214048 | Wilz | Aug 2013 | A1 |
20130256418 | Havens et al. | Oct 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130278425 | Cunningham et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292474 | Xian et al. | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306730 | Brady et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130306734 | Xian et al. | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Corcoran | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130313326 | Ehrhart | Nov 2013 | A1 |
20130327834 | Hennick et al. | Dec 2013 | A1 |
20130341399 | Xian et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008430 | Soule et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140021256 | Qu et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140027518 | Edmonds et al. | Jan 2014 | A1 |
20140034723 | Van Horn et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061305 | Nahill et al. | Mar 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140061307 | Wang et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140075846 | Woodburn | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140084068 | Gillet et al. | Mar 2014 | A1 |
20140086348 | Peake et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098284 | Oberpriller et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Li et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140121438 | Kearney | May 2014 | A1 |
20140121445 | Ding et al. | May 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140160329 | Ren et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages. |
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages. |
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages. |
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages. |
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages. |
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages. |
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages. |
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages. |
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages. |
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages. |
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages. |
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages. |
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages. |
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages. |
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages. |
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages. |
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages. |
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages. |
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages. |
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages. |
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.); 32 pages. |
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages. |
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages. |
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages. |
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages. |
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages. |
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages. |
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages. |
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang); 19 pages. |
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages. |
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages. |
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages. |
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages. |
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages. |
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages. |
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.); 25 pages. |
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.); 27 pages. |
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 21, 2014, (Barber et al.), 67 pages. |
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages. |
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.); 29 pages. |
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages. |
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.), 39 pages. |
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng et al.); 92 pages. |
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.); 30 pages. |
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages. |
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages. |
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages. |
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages. |
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
Number | Date | Country | |
---|---|---|---|
20150009610 A1 | Jan 2015 | US |