The present application relates generally to radio frequency (RF) antennas and antenna systems.
Mobile computing devices and other devices that communicate wirelessly have become common in recent years. Consumers are increasingly demanding greater functionality in a smaller footprint. As the number of functions a device performs continues to expand, devices must be able to communicate over a correspondingly expanding number of frequency bands used by various communication standards. This typically requires additional antennas, which must be somehow incorporated into a device while at the same time reducing or maintaining device size.
Examples described herein relate to use of non-antenna components of electronic devices as antennas or parts of antennas. Using the systems and methods described herein, a non-antenna electronic device component can be used as an antenna, as a portion of an antenna, or as part of a feed path from a transceiver to an antenna. An example system can include a transceiver and a non-antenna component coupled to the transceiver through a feed point. One or more conductive portions of the non-antenna component can serve as an antenna when provided a signal by the transceiver through the feed point or deliver a signal to the transceiver.
In some examples, an electronic device can include a transceiver as well as a conductive element and a non-antenna component having a conductive portion that are both coupled to an output of the transceiver. Either the conductive element, the conductive portion of the non-antenna component, or the combination of the conductive element and conductive portion of the non-antenna component can act as an antenna for the transceiver. The conductive element can be connected to the conductive portion of the non-antenna component and shaped such that the combination of the conductive element and the conductive portion of the non-antenna component together radiate with a radiation pattern approximating a known antenna type.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The foregoing and other objects, features, and advantages of the claimed subject matter will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
Using the systems and methods described herein, a non-antenna electronic device component can be used as an antenna or as part of antenna. Electronic devices that communicate wirelessly are often small devices that perform a variety of functions and communicate over a large number of communication frequency bands. Mobile devices, for example, contain multiple antennas in a small package. Antenna efficiency increases with increased separation from other conductive structures (sometimes referred to as a keep-out volume). Antennas are therefore typically separated from other components to provide better performance, but this separation between antennas and other conductive structures consumes valuable space and limits the potential for device miniaturization.
In addition to antennas, a number of non-antenna components having a conductive portion are typically included in electronic devices. These non-antenna components are typically designed to perform a function other than serving as an antenna and include, for example, buttons, connectors, structural supports, etc. A non-antenna component can be coupled to a transceiver and used as an antenna, as part of an antenna, or in the feed path of an antenna, thus allowing a more compact device design. A non-antenna component can also be coupled to an antenna component to act together as a different antenna. Examples are described in detail below with reference to
Non-antenna component 102 is coupled to a transceiver 104 through a feed point 106. One or more conductive portions (not shown) of non-antenna component 102 serve as an antenna when provided a signal by transceiver 104 through feed point 106. Non-antenna component 102 can also act as an antenna to receive signals and provide the received signals to transceiver 104. “Coupled” includes an electrical connection (e.g. connection through a conductor) as well as, in some examples, capacitive or inductive coupling.
System 100 is a simplified system for clarity. System 100 (and other example systems) can also include an impedance matching network (not shown) between transceiver 104 and feed point 106. An impedance matching network increases the amount of power that reaches non-antenna component 102 and reduces the amount of power that is reflected. System 100 can be part of an electronic device such as, for example, a mobile device or a game controller. In some examples, a variety of other components and connections may also be included.
Example systems can include a non-antenna component having a conductive portion and an additional conductor that are both coupled to an output of a transceiver, where at least one of the additional conductor or the conductive portion of the non-antenna component acts as an antenna or a portion thereof for the transceiver. Example configurations of such systems are shown in
In some examples, coupling of a transmitter portion of a transceiver to one or more of a non-antenna component, an antenna component, or additional conductors is described with reference to wireless signal radiation. The same or similar arrangements of conductors can be coupled to a receiver portion of a transceiver for detection of wireless signals. Some representative connections of non-antenna components, antenna components, and additional conductors are shown for purposes of illustration, but any particular arrangement or ordering of connections is generally selected as convenient for a particular application. For ease of illustration, connections of non-antenna components for non-antenna functions are not shown. For example, connections of audio jacks to audio circuitry, charging connector connections to charging circuits, and corresponding connections and circuitry associated with other non-antenna components are omitted from the figures.
In
In some examples, systems such as systems 100, 200, 300, and 400 of
Non-antenna components, whether used alone as antennas or in conjunction with additional conductors as antennas, can be used over a variety of communication frequency bands. The communication frequency bands can include, for example, typical Bluetooth® (e.g. 2.4 GHz), GPS (e.g. 1.2 GHz, 1.5 GHz), Wi-FI® (2.4 GHz, 5 GHz), and cellular (700 MHz-1 GHz and 1.7 GHz-2.2 GHz) communication frequencies (listed frequencies are approximate). Other frequencies and wireless communications protocols are also contemplated.
Non-antenna components used as antennas or as parts of antennas are subject to many of the same design guidelines, constraints, and considerations that apply to conventional antennas. The frequency band over which an antenna operates is a function of the antenna size and shape. For example, an antenna can be designed to be one-quarter or one-half of the wavelength of a target frequency or frequency band. Wavelength in a dielectric such as a printed circuit board (PCB) substrate and free space differ. The actual length of an antenna implemented in a device is therefore typically different than a free-space wavelength fraction. Additionally, antennas often meander to accommodate board design and space constraints. For meandered designs, the length of the antenna may need to be shortened or lengthened to account for the interactions between meandering portions. In many cases, conductor orientation and dimensions that provide adequate performance are determined empirically.
Thus, the size, shape, and orientation of additional conductors, for example, that are used with non-antenna components to act as an antenna can be selected to form a combined structure (non-antenna component and additional conductor) having a shape or length that radiates at a desired frequency. The characteristics of the additional conductor can be determined, for example, through simulation or by adding an amount of conductive material to form a structure having a length that is a fraction of a desired wavelength, for example one-fourth or one-half of a wavelength. The characteristics of an additional conductor can be adjusted and experimentally verified to account for the shape, size, meander, or other characteristics of the conductive portions of a non-antenna component.
In some examples, at least one of the one or more conductive portions of the non-antenna component is connected to an additional conductor, and the radiating of the wireless communication signal in process block 506 is performed by the additional conductor and the one or more conductive portions of the non-antenna component together acting as an antenna. The additional conductor can be configured such that the non-antenna component and the additional conductor together radiate with a radiation pattern approximating a known antenna type.
The feed point through which the communication signal is coupled from the feed path to the non-antenna component in process block 504 can be in a variety of locations, for example as is illustrated in
Although method 500 illustrates transmission of a wireless signal, complementary methods for receiving a wireless signal are also contemplated.
For thumbstick component 602, simulation indicates a second mode (one-and-a-half times the wavelength) and resonance at approximately 6 GHz. This allows thumbstick component 602 to also be used for 5 GHz Wi-FI® communication.
In one example using a particular thumbstick component having 9 conductive contacts that are typically grounded when the component is used only as a thumbstick, one contact served as the feed point, three contacts were isolated (not connected to ground), and five contacts were connected to ground. Determination of which contacts to ground and/or isolate can be done empirically.
The vibration mechanism (not shown) and metal support for the charging connector 810 can be modified to be a folded monopole or other monopole, a dipole, or a patch antenna. A charging connector can be used as an antenna for 2.4-2.6 GHz, for example. In
Metal screws in the housing or case of the device can be modified to serve as high-band antennas. Larger screws can radiate at lower frequencies. In some cases, screws include a non-conductive portion that provides electrical isolation. Screws can also be inserted into a threaded insulator. Because bandwidth is inversely proportional to dielectric constant, a higher bandwidth can be achieved by using material with a low dielectric constant (for example less than 4).
In some examples, a plurality of non-antenna components having conductive portions can be switched between and combined with one or more additional conductors to form different antennas. Multiple additional conductive portions can also be switchably connectable to a single non-antenna component such that the structure can be modified to form a plurality of different antennas depending upon which additional portion or portions are connected.
In the figures, connections between non-antenna components and other components (e.g. connections between input components and connectors and a processor) are not shown for clarity.
The illustrated mobile device 900 can include a controller or processor 910 (e.g., signal processor, microprocessor, application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), or other control and processing logic circuitry) for performing such tasks as signal coding, data processing, input/output processing, power control, and/or other functions. An operating system 912 can control the allocation and usage of the components 902 and support for one or more application programs 914. The application programs can include common mobile computing applications (e.g., email applications, calendars, contact managers, web browsers, messaging applications or any other computing application.
The illustrated mobile device 900 can include memory 920. Memory 920 can include non-removable memory 922 and/or removable memory 924. The non-removable memory 922 can include RAM, ROM, flash memory, a hard disk, or other well-known memory storage technologies. The removable memory 924 can include flash memory or a Subscriber Identity Module (SIM) card, which is well known in GSM communication systems, or other well-known memory storage technologies, such as “smart cards.” The memory 920 can be used for storing data and/or code for running the operating system 912 and the applications 914. Example data can include web pages, text, images, sound files, video data, or other data sets to be sent to and/or received from one or more network servers or other devices via one or more wired or wireless networks. The memory 920 can be used to store a subscriber identifier, such as an International Mobile Subscriber Identity (IMSI), and an equipment identifier, such as an International Mobile Equipment Identifier (IMEI). Such identifiers can be transmitted to a network server to identify users and equipment.
The mobile device 900 can support one or more input devices 930, such as a touchscreen 932, microphone 934, camera 936, physical keyboard 938 and/or trackball 1140 and one or more output devices 950, such as a speaker 952 and a display 954. Other possible output devices (not shown) can include piezoelectric or other haptic output devices. Some devices can serve more than one input/output function. For example, touchscreen 932 and display 954 can be combined in a single input/output device. The input devices 930 can include a Natural User Interface (NUI). An NUI is any interface technology that enables a user to interact with a device in a “natural” manner, free from artificial constraints imposed by input devices such as mice, keyboards, remote controls, and the like. Examples of NUI methods include those relying on speech recognition, touch and stylus recognition, gesture recognition both on screen and adjacent to the screen, air gestures, head and eye tracking, voice and speech, vision, touch, gestures, and machine intelligence. Other examples of a NUI include motion gesture detection using accelerometers/gyroscopes, facial recognition, 3D displays, head, eye, and gaze tracking, immersive augmented reality and virtual reality systems, all of which provide a more natural interface, as well as technologies for sensing brain activity using electric field sensing electrodes (EEG and related methods). Thus, in one specific example, the operating system 912 or applications 914 can comprise speech-recognition software as part of a voice user interface that allows a user to operate the device 900 via voice commands. Further, the device 900 can comprise input devices and software that allows for user interaction via a user's spatial gestures, such as detecting and interpreting gestures to provide input to a gaming application.
A wireless modem 960 can be coupled to an antenna 992 and can support two-way communications between the processor 910 and external devices, as is well understood in the art. The modem 960 is shown generically and can include a cellular modem for communicating with the mobile communication network 904 and/or other radio-based modems (e.g., Bluetooth 964 or Wi-FI 912). The wireless modem 960 is typically configured for communication with one or more cellular networks, such as a GSM network for data and voice communications within a single cellular network, between cellular networks, or between the mobile device and a public switched telephone network (PSTN).
The mobile device can further include at least one input/output port 980, a power supply 982, a satellite navigation system receiver 984, such as a Global Positioning System (GPS) receiver, an accelerometer 986, and/or a physical connector 990, which can be a USB port, IEEE 1394 (FireWire) port, and/or RS-232 port. The illustrated components 902 are not required or all-inclusive, as any components can be deleted and other components can be added. Antennas 992 can include non-antenna electronic device components used as antennas. Possible couplings of the one or more antennas to some non-antenna components are indicated by dashed lines in
The disclosed methods, apparatus, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and subcombinations with one another. The disclosed methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope of these claims.
This application claims the benefit of U.S. Provisional Application No. 61/825,946, filed on May 21, 2013 and titled “ANTENNA SYSTEMS,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61825946 | May 2013 | US |