This non-provisional application claims priority under 35 U.S.C. ยง 119(a) to Patent Application No. 202211449032.0 filed in China, P.R.C. on Nov. 18, 2022, the entire contents of which are hereby incorporated by reference.
The present disclosure relates to the application of the M.2 connector. In particular, the present disclosure relates to an electronic device having an M.2 connector compatible with two communication modules with different pin definitions, a method for making two communication modules be compatible in a single M.2 connector, and a computer-implemented method thereof.
4G communication technology has been widely used in various electronic devices. For example, an electronic device can use the 4G communication function by being equipped with a 4G module. In recent years, 5G communication technology, a new generation of the communication technology, has been developed, and an electronic device can use the 5G communication function by being equipped with a 5G module.
Both the 4G module and the 5G module are connected to an electronic device through the M.2 connectors, however, the pin definitions of the connection pins of the 4G module and the 5G module are different, such that the 4G module and the 5G module cannot be directly compatible with the same M.2 connector.
In an embodiment, the present disclosure provides an electronic device. The electronic device includes an M.2 connector, a protection circuit, and a processor. The M.2 connector has a first pin and a second pin. The protection circuit is coupled to the first pin and the second pin. The processor is configured to determine whether a module inserted into the M.2 connector is a 4G module or a 5G module. In response to that the processor determines that the module inserted into the M.2 connector is the 4G module, the processor causes the protection circuit to execute a protection process. In response to that the processor determines that the module inserted into the M.2 connector is the 5G module, the processor causes the protection circuit not to execute the protection process. In the protection process, the protection circuit blocks an electrical connection between the first pin and a first power supply and blocks an electrical connection between the second pin and a reset signal.
In an embodiment, the present disclosure provides a method for making a 4G module and a 5G module be compatible in a single M.2 connector. The method includes: determining whether a module inserted into an M.2 connector is a 4G module or a 5G module; executing a protection process in response to determining that the module inserted into the M.2 connector is the 4G module; and not executing the protection process in response to determining that the module inserted into the M.2 connector is the 5G module. The protection process includes: blocking an electrical connection between a first pin of the M.2 connector and a first power supply; and blocking an electrical connection between a second pin of the M.2 connector and a reset signal.
In an embodiment, the present disclosure provides a computer-implemented method for making a 4G module and a 5G module be compatible in a single M.2 connector. The computer-implemented method includes the following steps executed by a processor: determining whether a module inserted into an M.2 connector is a 4G module or a 5G module; causing a protection circuit to execute a protection process in response to determining that the module inserted into the M.2 connector is the 4G module; and causing the protection circuit not to execute the protection process in response to determining that the module inserted into the M.2 connector is the 5G module. The protection process includes: blocking an electrical connection between a first pin of the M.2 connector and a first power supply; and blocking an electrical connection between a second pin of the M.2 connector and a reset signal.
To sum up, according to one or some embodiments of the present disclosure, the electronic device, the method for making the 4G module and the 5G module be compatible in the single M.2 connector, and the computer-implemented method thereof can determine whether a module inserted into an M.2 connector is a 4G module or a 5G module. In response to determining that the module inserted into the M.2 connector is the 4G module, the electronic device, the method for making the 4G module and the 5G module be compatible in the single M.2 connector, and the computer-implemented method thereof according to any embodiments of the present disclosure cause a protection circuit to execute a protection process to prevent the 4G module being affected by a first power supply coupled to a first pin of the M.2 connector and by a reset signal coupled to a second pin of the M.2 connector. In response to determining that the module inserted into the M.2 connector is the 5G module, the electronic device, the method for making the 4G module and the 5G module be compatible in the single M.2 connector, and the computer-implemented method thereof according to any embodiments of the present disclosure cause the protection circuit not to execute the protection process, such that the 5G module can connect to the first power supply through the first pin and can connect to the reset signal through the second pin. In this way, the 4G module and the 5G module can share the same M.2 connector (i.e., in some embodiments, use the same printed circuit board assembly (PCBA)) without configuring additional respective circuits.
Detailed features and advantages of the present disclosure are described in detail in the following implementations, and the content of the implementations is sufficient for a person skilled in the art to understand and implement the technical content of the present disclosure. A person skilled in the art can easily understand the objectives and advantages related to the present disclosure according to the contents disclosed in this specification, the claims, and the drawings.
To make the objectives, features, and advantages of the embodiments of the present disclosure more comprehensible, the following provides detailed descriptions with reference to the accompanying drawings.
The M.2 connector 110 has a plurality of pins, and the plurality of pins can be configured to be connected to a communication module. For example, the connection interface (which has a plurality of connection pins) of the communication module is inserted into the slot of the M.2 connector to allow the connection pins of the connection interface contact the pins of the M.2 connector, so that the communication module is connected to the M.2 connector. In some embodiments, the communication module may be a 4G module 210 configured to provide a 4G communication function or a 5G module 220 configured to provide a 5G communication function. In some implementations, the type of the M.2 connector 110 may be B Key. Furthermore, the connection interface of the 4G module 210 may be USB 3.0, and the connection interface of the 5G module 220 may be PCIe.
In some embodiments, the system circuit 140 is a system circuit that is configured corresponding to the requirements for the operation of the 5G module 220 and can be directly utilized by the 5G module 220. In other words, in some embodiments, after the 5G module 220 is inserted into the M.2 connector 110, the 5G module 220 can operate normally through the system circuit 140 to provide the electronic device 100 with a 5G communication function.
In some embodiments, the system circuit 140 at least includes a first power supply V1 and a reset signal SR. Wherein, the first power supply V1 is coupled to a first pin P1 of the plurality of pins of the M.2 connector 110, and the reset signal SR is coupled to a second pin P2 of the plurality of pins of the M.2 connector.
In some implementations, in the case that the 4G module 210 is implemented with a module whose product serial number is EM7511 and the 5G module 220 is implemented with a module whose product serial number is EM9190, the pin number of the first pin P1 is 24, and the pin number of the second pin P1 is 50.
In some implementations, the pin name of a connection pin in the 5G module 220 configured to be connected to the first pin P1 of the M.2 connector 110 may be defined as +3.3V, and the first power supply V1 in the system circuit 140 is 3.3 volts. Furthermore, the pin name of a connection pin in the 5G module 220 configured to be connected to the second pin P2 of the M.2 connector 110 may be defined as PCIE_PREST_N, and the reset signal SR is a signal in the PCIe interface for resetting. On the other hand, the pin name of a connection pin in the 4G module 210 configured to be connected to the first pin P1 of the M.2 connector 110 may be defined as PCM_DOUT/I2S DOUT, and the signal potential for this connection pin is 1.8 volts, which is different from the signal potential for the 5G module 220. Furthermore, the pin name of a connection pin in the 4G module 210 configured to be connected to the second pin P2 of the M.2 connector 110 may be defined as PCIE_PREST_N. In this implementation, although the pin name of the connection pin in the 4G module 210 configured to be connected to the second pin P2 of the M.2 connector 110 is the same as the pin name of the connection pin in the 5G module 220 configured to be connected to the second pin P2 of the M.2 connector 110, the 4G module 210 does not use the signal on this pin because the connection interface of the 4G module 210 is USB 3.0.
In order to make the 4G module 210 whose pin definition is different from the pin definition of the 5G module 220 can also operate normally through the system circuit 140 so as to provide the electronic device 100 with a 4G communication function after the 4G module 210 is inserted into the M.2 connector 110, the protection circuit 120 according to one or some embodiments of the present disclosure is coupled between the first pin P1 and the second pin P2 of the M.2 connector 110 and the first power supply V1 and the reset signal SR of the system circuit 140. The protection circuit 120 can be configured to control an electrical connection between the first pin P1 of the M.2 connector 110 and the first power supply V1 in the system circuit 140, and the protection circuit 120 can also be configured to control an electrical connection between the second pin P2 of the M.2 connector 110 and the reset signal SR in the system circuit 140.
The processor 130 is configured to determine whether a communication module inserted into the M.2 connector 110 is a 4G module 210 or a 5G module 220, and the processor 130 is also configured to control the operation of the protection circuit 120 according to the determination result. As such, no matter the communication module inserted into the M.2 connector 110 is the 4G module 210 or the 5G module 220, the communication module inserted into the M.2 connector 110 can operate normally through the system circuit 140 so as to provide the electronic device 100 with a corresponding 4G or a 5G communication function. In some implementations, the processor 130 may be implemented by using a SCO (system on chip), a CPU (central processing unit), a MCU (microprocessor), a AP (application processor), a DSP (digital signal processor), an ASIC (application specific integrated circuit), any combination thereof, or any suitable circuits, but the present disclosure is not limited thereto.
In response to that the processor 130 determines that the communication module inserted into the M.2 connector 110 is the 4G module 210, the electronic device 100 causes the protection circuit 120 to execute a protection process by using the processor 130 (the step S20). On the other hand, in response to that the processor 130 determines that the communication module inserted into the M.2 connector 110 is the 5G module 220, the electronic device 100 causes the protection circuit 120 not to execute the protection process by using the processor 130 (the step S30).
In some embodiments, the electronic device 100 may further include a controller 150, and the controller 150 is coupled between the processor 130 and the protection circuit 120. The controller 150 is configured to control the operation of the protection circuit 120 according to a control flag set by the processor 130.
In some embodiments, the protection circuit 120 includes a switch module 121 and a tristate buffer 122. The switch module 121 is coupled between the first pin P1 of the M.2 connector 110 and the first power supply V1 in the system circuit 140 to control the electrical connection between the first pin P1 and the first power supply V1. The tristate buffer 122 has an input terminal and an output terminal. The input terminal of the tristate buffer 122 is coupled to the reset signal SR and the output terminal of the tristate buffer 122 is coupled to the second pin P2 of the M.2 connector 110 to control the electrical connection between the second pin P2 and the reset signal SR.
In an embodiment of the step S221, the switch module 121 of the protection circuit 120 is disabled due to the reception of the enable signal SE. Furthermore, the switch module 121 disconnects the electrical connection between the first pin P1 and the first power supply V1 after the switch module 121 is disabled so as to prevent the first power supply V1 from affecting the 4G module 210 through the first pin P1, for example, the 4G module 210 may be burned by the first power supply V1 through the first pin P1. In some implementations, the switch module 121 may be implemented by using any type of switch components, for example, but not limited to transistors, transmission gates, or the like. In other implementations, the switch module 121 may be implemented by using a switch module with reverse current protection function to prevent from that the current in the 4G module 210 flows into the system circuit 140 through the first pin P1 so as to affect the system circuit 140.
In an embodiment of the step S222, the tristate buffer 122 of the protection circuit 120 is disabled due to the reception of the enable signal SE. Furthermore, the output terminal of the tristate buffer 122 is in a high-impedance state after the tristate buffer 122 is disabled so as to prevent the reset signal SR from causing the 4G module 210 to malfunction through the second pin P2, for example, the rest signal SR may cause the 4G module 210 to be unrecognized in the power cycling.
In some implementations, the circuits of the protection circuit 120 may be schematically shown in
In some implementations, after the controller 150 generates a control signal 5G_SEL with a logic value of 0 (i.e., enable signal SE) according to the 4G flag F1, the first transistor of the control module 123 of the protection circuit 120 is cutoff to generate a control signal 5G_SEL# with a logic value of 1, and the second transistor of the control module 123 of the protection circuit 120 is conducted due to the control signal 5G_SEL# so as to generate a control signal EM9190_PWR_EN with a logic value of 0. In this case, the switch module 121 is disabled due to the reception of the control signal EM9190_PWR_EN with the logic value of 0, thereby disconnecting the electrical connection between the first pin P1 and the first power supply V1. Furthermore, the tristate buffer 122 is disabled due to the reception of the control signal 5G_SEL# with the logic value of 1, such that a high-impedance state (i.e., the signal 5G_RST_OE# is a high-impedance signal) is presented on the connection pin Y (i.e., the output terminal of the tristate buffer 122). After the controller 150 generates a control signal 5G_SEL with a logic value of 1 (i.e., the disable signal SD) according to the 5G flag F2, the first transistor of the control module 123 of the protection circuit 120 is conducted and generates a control signal 5G_SEL# with a logic value of 0, and the second transistor of the control module 123 of the protection circuit 120 is cutoff according to the control signal 5G_SEL# so as to generate a control signal EM9190_PWR_EN with a logic value of 1. In this case, the switch module 121 is enabled due to the reception of the control signal EM9190_PWR_EN with the logic value of 1, thereby conducting the electrical connection between the first pin P1 and the first power supply V1 (i.e., in this embodiment, the path from the connection pin IN to the connection pin OUT). Furthermore, the tristate buffer 122 is enabled due to the reception of the control signal 5G_SEL# with the logic value of 0, thereby conducting the electrical connection between the second pin P2 and the reset signal SR (i.e., in this embodiment, the path from the connection pin A to the connection pin Y). In this case, the signal 5G_RST_OE# is the reset signal SR.
To sum up, according to one or some embodiments of the present disclosure, the electronic device 100, the method for making the 4G module 210 and the 5G module 220 be compatible in the single M.2 connector 110 and the computer-implemented method thereof can determine whether a module inserted into an M.2 connector 110 is a 4G module 210 or a 5G module 220. In response to determining that the module inserted into the M.2 connector 110 is the 4G module 210, the electronic device 100, the method for making the 4G module 210 and the 5G module 220 be compatible in the single M.2 connector 110 and the computer-implemented method thereof according to any embodiments of the present disclosure cause a protection circuit 120 to execute a protection process to prevent the 4G module 210 being affected by a first power supply V1 coupled to a first pin P1 of the M.2 connector 110 and by a reset signal SR coupled to a second pin P2 of the M.2 connector 110. In response to determining that the module inserted into the M.2 connector 110 is the 5G module 220, the electronic device 100, the method for making the 4G module 210 and the 5G module 220 be compatible in the single M.2 connector 110 and the computer-implemented method thereof according to any embodiments of the present disclosure cause the protection circuit 120 not to execute the protection process, such that the 5G module 220 can connect to the first power supply V1 through the first pin P1 and can connect to the reset signal SR through the second pin P2. In this way, the 4G module 210 and the 5G module 220 can share the same M.2 connector 110 (i.e., in some embodiments, use the same printed circuit board assembly (PCBA)) without configuring additional respective circuits.
Although the present disclosure has been described in considerable detail with reference to certain preferred embodiments thereof, the disclosure is not for limiting the scope of the disclosure. Persons having ordinary skill in the art may make various modifications and changes without departing from the scope and spirit of the present disclosure. Therefore, the scope of the appended claims should not be limited to the description of the preferred embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
202211449032.0 | Nov 2022 | CN | national |