The present disclosure relates to a holder or a stand for use with electronic devices including but not limited to tablet personal computers (e.g., an iPad® or an iPad2®), e-book readers (e.g., a Nook™), smart phones (e.g., an iPhone®), cellular phones, GPS units, touch screen devices, digital display devices, electronic notebooks, and the like.
When using an electronic device such as a tablet personal computer (also referred to herein simply as a “tablet”, a user is normally required to hold the tablet in his or her hands which can pose problems if the user is engaging in another contemporaneous activity, such as playing a musical instrument, where his or her hands are required or if the user does not wish to hold the tablet the entire time that he or she is working on the tablet. The user may then be required to place the tablet on a table, countertop, or another location which may not be suitable for the activity for which he or she is using the tablet. Thus, there is a need in the art for a hands-free holder or stand for an electronic device such as a tablet that includes rapid and easy engagement and removal.
Furthermore, what might be desired in the art is a hands-free stand/holder for electronic devices such as tablets that allow for full 360-degree rotation of the electronic devices for not only landscape and portrait viewing but also for a wide range of swivel and tilt in all directions (e.g., positioning at least about 3-axes such as yaw, pitch, and roll) to a preferred inclination and orientation.
Most modern electronic devices now alter their displayed image orientation by the rapid change from physical landscape to portrait orientation simply by rotating the electronic device 90 degrees to the new preferred orientation. These newer electronic devices sense their attitude using an internal sensor such as an accelerometer. These accelerometers can have as many as 3-axes and can be electronically monitored by the computer and converted to data for use with their software. The software can then determine finger gestures or rotational accelerations which the user creates to change the orientation of the image on the electronic device. For example, the display can quickly change from portrait to landscape left with a 90-degree counterclockwise rotation of the device.
Because of this rapid and frequent need to change the orientation from landscape to portrait, or, vice versa, it might also be desirable, in addition to providing a wide-range of swivel and tilt in all directions (e.g., positioning at least about 3-axes such as yaw, pitch, and roll), to allow ease and speed of motion in only the roll axis without disturbing already set preferred yaw and pitch axes.
According to one example embodiment, the present disclosure relates to a hands-free holder/stand for use with an electronic device such as a tablet, the holder including a base, a neck, a ball and socket connector, and a head.
According to another example embodiment, the neck portion of the holder may include a rigid portion, a crimp portion, a flexible portion, and a threaded stud portion that is configured to be fastened to the ball and socket connector.
According to another example embodiment, the head of the holder is mechanically coupled to the electronic device. According to one embodiment, the head of the holder is directly coupled to the electronic device such as with flexible portions that elastically deform to snap-fit the head to the electronic device. According to another embodiment, the head is coupled to a converter structure that is separately coupled to the electronic device. As such, according to certain example embodiments, the converter structure may be coupled to the electronic device via adhesives and the head of the holder may be coupled to the converter structure with latches, cams, threads, or magnets.
According to another example embodiment, the holder for an electronic device includes a head with elastically flexible portions configured to removably receive the electronic device with a snap-fit interlock, a neck for supporting the head relative to a surface, and an attitude adjustment mechanism such as a hinge, a pivot, a swivel, or a ball and socket connector coupling the neck to the head, the attitude adjustment mechanism configured to allow adjustment of the yaw, the pitch, and the roll of the electronic device with respect to the neck when the electronic device is coupled to the head.
According to another example embodiment, the holder for an electronic device includes a head configured to removably receive the electronic device, a neck for supporting the head relative to a surface, a ball and socket connector coupling the neck to the head, the ball and socket connector configured to allow adjustment of the yaw, the pitch, and the roll of the electronic device relative to the neck when the electronic device is coupled to the head, and a rotary joint that allows further independent adjustment of the roll of the electronic device without disturbing the yaw and the pitch of the electronic device after the yaw, the pitch, and the roll of the electronic device have been initially adjusted and locked using the ball and socket connector.
According to another example embodiment, the present disclosure relates to a holder system for an electronic device that includes a converter that is configured to be attached to the electronic device and a head that is configured to be attached to the converter with mechanical couplings such as for example with cams, latches, threads, or magnets, wherein the head includes at least one movable portion that is configured for detaching the head from the converter.
Referring now to
Still referring to
As will be described in further detail below, the base 14 of the depicted embodiment includes an essentially flat platform that includes lateral extensions 30 that create a V-shaped structure 32. According to certain embodiments, the base 14 may be manufactured of metal and may include surface texturing, giving the base 14 a rough feel.
As will be described in further detail below, the rigid portion 22 of the neck 16 includes a distal end 34 and a proximal end 36. At its proximal end 36, the rigid portion 22 is configured to be attached to the base 14 at the apex 38 of the V-shaped platform 32. The rigid portion 22 may be manufactured of a metal pipe having, according to certain embodiments, a diameter of about 19 millimeters and a length of about 300 millimeters.
The flexible portion 26 of the neck 16 also includes a distal end 40 and a proximal end 42. The flexible portion 26 is attached at its proximal end 42 to the rigid portion 22 via the crimp portion 24 of the neck 14. According to certain embodiments, the flexible portion 26 may be made out of metal gooseneck tubing having a diameter of about 18 millimeters and a length of about 600 millimeters. The distal end 40 of the flexible portion 26 may be configured to receive the threaded stud 28 having a proximal threaded end 44 and a distal threaded end 46. As depicted, the body 48 of the threaded stud 28 may be provided with a 45-degree bend.
As will described in further detail below, the ball and socket connector 18, which provides for pivotal adjustment of the head 20 with respect to the base 14 and the neck 16, includes a ball 50 that is configured to receive the distal end 46 of the threaded stud 28.
The head 20 of the holder 10, in the depicted embodiment, includes a three-point clamp structure 52 having a first arm 54 on a first side 56 and second and third arms 58, 60 on a second side 62 of the head 20. The second and third arms 58, 60 are positioned on the two corners of the second side 62 of the head 20. In the depicted embodiment, the head 20 of the holder 10 is configured to be mechanically coupled to the tablet 12. According to one embodiment, the head 20 of the holder 10 is directly coupled to the electronic device 12 via the first, second and third arms 54, 58, 60 that elastically flex to receive the tablet 12. In one embodiment, the head 20 or portions thereof may be formed out of a polymeric material to provide the desired flexibility.
The present disclosure and the embodiments described herein enable a user to use his or her tablet 12 hands-free and to adjust the tablet 12 in approximately a 360-degree of freedom to preferred vertical and horizontal positions, in a preferred inclination and orientation, including for landscape and portrait viewing. According to one example embodiment, the tablet 12 can be adjustable 360 degrees along a roll spherical axis and about 45 degrees along the yaw and pitch spherical axes (see
Referring now specifically to
According to one embodiment, the base 14 has a total length of about of 22.702 inches and a total width of about 10.50 inches, each lateral extension 30 having a width of about 3.125 inches. As shown in
Now referring to
As shown in
As noted above, the distal end 40 of the flexible portion 26 is configured to receive the threaded stud 28 having a proximal threaded end 44 and a distal threaded end 46. As depicted, the distal end 40 of the flexible portion 26 may include a threaded internal bore 66 for receiving the threaded proximal end 44 of the stud 28. The 45-degree bend provided to the body 48 of the threaded stud 28 may allow for additional range of motion of the holder 10.
Referring now to
The ball 50, which has a diameter of about ¾″ in one embodiment, includes an internally threaded bore 72 that receives the distal end 46 of the threaded stud 28. Once the ball 50 is firmly engaged with the threaded stud 28, the slideable, rotatable interaction of the ball 50 within the socket 68 allows the head 20 of the holder 10 to have approximately 360-degree adjustability along at least one axis. According to one example embodiment, the tablet 12 can be adjustable 360 degrees along a roll spherical axis and about 45 degrees along the yaw and pitch spherical axes (see
The socket 68, in the depicted example embodiment, a portion 74 that receives the ball 50. The portion 74 can be clamped against the ball 50 via the threaded nut 70 once a desired position for the tablet 12 is established and the ball 50 is ready to be locked in place.
Referring now to
As noted above, the head 20 or portions thereof may be made of polymeric material, which provides the flexibility needed to receive and cradle the tablet 12 in a three-point clamp.
In the depicted embodiment, the head 20 includes the first arm 54 on the first side 56 and second and third arms 58, 60 on the second side 62 of the head 20. The second and third arms 58, 60 are positioned on the two corners of the second side 62 of the head 20. Each of the arms 54, 58, 60 may include forwardly extending portions 80 at the outer ends thereof for receiving and cradling the tablet 12. The forwardly extending portions 80 may include tabs 82 that extend in a direction toward a center of the tablet 12. The tabs 82 are configured to provide a snap-fit engagement between the head 20 and the tablet 12 and limit removal of the tablet 12 from the head 20. The polymeric make-up of the head 20 allows for a lightweight design and easy insertion and removal of the tablet 12.
With the features of the above-described embodiment, a tablet 12 may be positioned in nearly any convenient orientation for operation and viewing. When the head 20 of the holder 10 is in the desired position, the ball and socket connector 18 can be tightened by rotating the nut 70, resulting in a locked secure fixed orientation.
Although in the foregoing embodiment, the holder 10 is described and illustrated as having a base 14 that is configured to stand on a surface, in other embodiments, the base 14 can be configured for mounting to an appliance surface, a dashboard, a table top, a desk top, a wall surface, a floor surface, or to any desired surface.
The above described holder 10 includes features for adjusting orientation, attitude, and position of the electronic device such as a tablet 12. The holder 10 provides direct secure fixed engagement of the tablet 12 regardless of its orientation, attitude, and position. The head 20 of the holder 10 provides for rapid and easy engagement and removal such as in a quick-connect and quick-disconnect mechanism for the tablet 12. Although in the depicted example embodiment, the holder 10 is described and illustrated as using a ball and socket connector 18, the 360-degree adjustability may be provided using a variety of other mechanical methods including swivels, bearings, flexible members, magnets, detents, pivots, hinges, and combinations therebetween.
Referring now to
As noted previously, many modern electronic devices such as tablets 12 now alter their displayed image orientation by the rapid change from physical landscape to portrait orientation simply by rotating the device 90 degrees to the new preferred orientation. These newer electronic devices such as tablets 12 sense their attitude using an internal sensor such as an accelerometer. These accelerometers can have as many as 3-axes and can be electronically monitored by the computer and converted to data for use with their software. The software can then determine finger gestures or rotational accelerations which the user creates to change the orientation of the image on the electronic device. For example, the display can quickly change from portrait to landscape left with a 90-degree counterclockwise rotation of the tablet 12.
Thus, in addition to providing a wide-range of swivel and tilt in all directions (e.g., positioning in at least 3-axes such as yaw, pitch, and roll), as featured in the first embodiment of the holder 10 of
In the second embodiment of the holder 100 illustrated specifically in
As will be described in further detail below, the rotary swiveling joint 102 can include additional features to provide stable positions at 90-degree intervals. These stable positions can be provided by features such as detents or locks, or even magnetic structures creating magnetic nodes.
For example, the rotary joint 102 may be provided by a spring engaged pawl that can be used to nest into suitable notch at each 90-degree interval. When a pawl is nestled into a notch, rotation would be suspended until a predetermined break-away torque is imparted. As such, the holder 100 can provide easy rotation between quadrants such as 9 o'clock, 12 o'clock, and 3 o'clock on a clock dial, but relative stability at each quadrant point. If magnets are used, magnets can be used to provide tactile feedback at each of the quadrants or provide the holding torque with stable resting nodes.
In addition, the rotary joint 102 can provide end stops 106 in each rotational direction to limit the degrees of freedom to any desired angle such as 180 degrees. The benefit of limiting the rotation to 180 degrees may be that once the rotation is stopped by an end stop 106, the holder 100 itself can be used as a torque arm to tighten or loosen a threaded nut 108 of the ball and socket connector 104. Without any rotation limits, the nut 108 could be difficult to tighten as the joint 102 might allow a head 110 of the holder 100 to free wheel.
As will be described in further detail below, the end stops 106 can be provided by tabs 112 that engage opposing surfaces 114. When a user wants to tighten or loosen a ball 116 of the ball and socket connector 104, the end stops 106 can be engaged to provide the needed torque.
Alternately, instead of providing end stops 106, any features that are opposing the rotational direction of the threaded nut 108 can be grasped by the other hand of the user as counter torque for loosening and tightening the nut 108.
As will be described in further detail below, the rotary joint 102 that provides rapid change between landscape and portrait orientations about the roll axis without disturbing the yaw and pitch axes can be configured to be easily and effortlessly turned from end to end or have pre-defined nodes of stability.
Referring now to
Referring now specifically to
The rotary joint 102 is formed between a socket member 122 of the ball and socket connector 104 and the head 110 of the holder 100. The rotary joint 102 is formed by a circular protrusion 124 on the head portion 110 that receives the socket member 122 with a snap fit. The circular protrusion 124 defines a track 126 around the outer perimeter thereof for allowing the socket member 122 to rotate about the protrusion 124 to allow quick orientation change about the roll axis.
In the illustrated example of the rotary joint 102, magnets 128 are used to provide the holding force and the tactile feedback at each of the quadrants. Both the head 110 and the socket member 122 are populated with magnets 128 that are configured to be aligned in an axial configuration to provide discrete temporary locking positions for the rotary joint 102. In the depicted embodiment, a suitable slip disk 130 is used to provide a controlled friction-reducing gap between magnets 128 of approximately 0.005″ to 0.030″.
The socket member 122 is secured to the ball 116 of the ball and socket connector 104 with the threaded nut 108, similar to the first embodiment of the holder 10. The ball and socket connector 104, as discussed, provides full adjustability, and, once set and tightened in place, allows the rotary joint 102 to be used for quick orientation changes about the roll axis.
In the depicted embodiment, an end-stop 106 is provided for the rotary joint 102, wherein the head portion 110 of the holder 100 includes an engagement surface 114 that is contacted by a pair of oppositely positioned tabs/protrusions 112 provided on the socket member 122 to define the end-stops 106 (please see
The magnetic force between the magnets 128 of the socket member 122 and the magnets 128 of the head 110 may be broken by rotating the socket 122 with respect to the head 110 in either direction. Each magnet 128 around the circular periphery of both the head 110 and the socket 122 provides a discrete locking position about the roll axis.
In either of the second and third embodiments of the holders 100, 200, eight total magnets 128 may be used, an aligned pair in each quadrant. However, to reduce costs, six magnets 128 can be used, with the understanding that the holding force provided by the magnets 128 will vary from the landscape orientation to the portrait orientation. For example, two pairs would be in alignment at either landscape right or landscape left orientation and three pairs would be in alignment in the portrait orientation, as in the illustrated example of
In the illustrated example, a neck 306 of the holder 302 is depicted as including only a threaded stud 308, wherein a head 316 of the holder 302 is directly attached to a base 310 via the threaded stud 308. In the depicted example, the base 310 includes openings 312 for mounting the base 310 to a variety of different surfaces with fasteners as described above. It should be noted that the neck 306 and base 310 illustrated with the fourth embodiment of the holder 302 is simply one example configuration and any other configuration such as those described and illustrated for the first, second, and third embodiments of the holder 10, 100, 200 can be used with the holder system 300 of
As discussed previously, in other embodiments of the holder, instead of using magnets 128, a rotary joint 326 may be provided by a spring engaged pawl that can be used to nest into suitable notch at each 90-degree interval. When a pawl is nestled into a notch, rotation would be suspended until a predetermined break-away torque is imparted. As such, the holder system 300 can provide easy rotation between quadrants such as 9 o'clock, 12 o'clock, and 3 o'clock on a clock dial, but relative stability at each quadrant point.
As will be described in detail below, the holder system 300 of
In the depicted examples of holders 10, 100, 200 shown in
The fourth embodiment of the holder 302 forms a part of a holder system 300 that provides a universal type docking arrangement, wherein the same arrangement can be used with a variety of devices without having to modify the head 316 of the holder 300.
In certain embodiments, a universal type of a docking arrangement may be provided with movable or adjustable features of the head portion 316 such as arms, fingers, latches, straps, hook-and-loop fasteners (e.g., Velcro™), or adhesive. However, when providing the docking arrangement, it is normally desired that the installation and removal of the electronic device be easy and fast. In the broadest sense, the quick connect/disconnect desire can be accomplished by adapting each electronic device to a given standard docking geometry. In other words, the quick connect/disconnect feature may be provided by converting each electronic device to a given standard holder.
As such, the depicted embodiment of the holder system 300 includes the converter structure 304 that can be adapted to a variety of different electronic devices, wherein the converter structure 304 enables the same “universal” holder (e.g., holder 302) to be used with a variety of different electronic devices.
In certain embodiments, the converter 304 can be permanently or semi-permanently attached to the electronic device using, for example, adhesives. These adhesives can be tailored for long-term permanence using products such as 3M VHB™ foam tapes, or semi-permanence using products such as 3M Command™ adhesive systems.
As will be described in further detail, the converter structure 304 can include a mechanical interlock with the head 316 of the holder 302. In certain embodiments, these mechanical interlock features can be engaged by simple bringing the converter 304 in proximity to the head 316 of the holder 302. Once the converter 304 and head 316 are quickly mated, they remain firmly attached to each other. In this way, the electronic device 12 remains fixedly connected to the head unit 316 and can benefit from the configurable positioning of a ball and socket joint 318 of the holder 302. Further, the electronic device 12 can benefit from easy and speedy clockwise or counterclockwise rotation about the roll axis, stopping at each quadrant as desired.
In the depicted embodiment, the head unit 316 also allows for rapid and easy removal from the converter 304. Removal can be provided by disengaging the mechanical feature by pushing a button, sliding or rotating a lever, a screw, or a cam, twisting, prying or the like. Another method of docking the converter 304 with the head 316 may be provided by using magnets. Neodymium magnets can provide considerable forces in small sizes. These magnets can be separated by simple lateral sliding, or shearing motion.
One example embodiment of a holder system 300 that provides for a quick connect/disconnect arrangement between the head 316 of the holder 302 and a converter structure 304 of the system 300 is described below.
In
The electronic device 12 is adapted or converted by attaching the converter structure 304 (shown in detail in
Referring back to
Referring specifically now to
Each detachment member 330 includes an arcuate magnet 328 attached thereto with adhesive tape 336.
Referring now to
Regarding the operation of the holder system 300,
In the depicted embodiment, as shown in
The magnetic contact force between the head 316 and the converter 304 is greatest when the magnet 328 is in direct contact with its steel target 342, but a thin-film of polymer can reduce the sliding friction and may be desired to cosmetically decorate the converter. The thicker the film of polymer, the lower the magnetic coupling force will be.
In one example embodiment, if each arcuate-shaped magnet 328 has a surface area of about 1.308 square inches at about 0.125″ thickness and is magnetized to an N42 strength, the magnet 328 can have a maximum pull force of about 16.94 lbs. against a suitably thick steel target 342. When the magnet 328 is spaced a distance from the steel target 342 with about a 0.020″ gap, the magnetic force is reduced to about 71% strength, resulting in about 11.95 lbs. The steel target 342 is also desired to be very thin to have the least impact on the thickness of the converter 304. A steel target 342 of at least about 0.078″ provides the maximum magnetic coupling force. Reducing this target thickness to about 0.060″ for 16 gauge steel nets only 92% of full force. The total resulting force is then calculated to be 11.95×92%=10.99 lbs. Two magnets 328 therefore can provide almost about 22 lbs. of holding force.
In
As noted previously, both of the detachment members 330 are biased outwardly to the steel target plates 342, the biasing forces being provided by the internal springs 332 shown in
Although the targets 342 provided in the converter structure 304 that are used to attract the magnets 328 provided in the detachment members 330 of the head 316 have been described as being steel, it should be noted that steel is only one example material and other suitable metals may be used.
As shown, the ball nut 322 is internally threaded to engage with external threads 360 of the rotary socket 324. Similar to the second and third embodiments of the holder 100, 200, four button or disc magnets 128 are bonded into four rotary socket magnet pockets 362. A slip disk 364 separates the rotary socket 324 from the head main body 344 and reduces friction and provides a controllable gap between the magnets 128. Four magnets 128 are bonded into the head main body 344. A Plastite® or other suitable screw 366 may be used to couple the head main body 344 to the rotary socket 324. A graphic 368 can be applied to the centering face of the head main body 344.
As discussed previously, the ball and socket joint 318 provide for spherical adjustments and rigid connection when the ball nut 322 is tightened. The center screw 366 may be provided to keep the socket 324 axially retained to the head main body 344 while allowing rotational motion therebetween. The screw 366 can be adjusted to provide the desired pre-load for a friction-free yet stable rotary operation.
The head 316 of the holder 302 can be molded from ABS plastic, polycarbonate, nylon, or similar non-magnetic materials. Industrial versions can be formed from aluminum as desired. The rotary socket 324 can also be formed from similar materials and is configured to include opposing four magnets 128, one at each quadrant. The magnets 128 strongly attract each other. N42 strength button magnets Ø8 mm×3 mm may have an attracting force of about 2.28 lbs. when spaced about 0.010″ apart. Four of these magnet pairs may provide about 9.12 lbs. of force total. The sliding force of these magnet pairs are approximately ½ of the axial force. Therefore, the resulting magnetic holding force against rotary motion is approximately 4.56 lbs. If the magnets 128 are arrayed along a 1.5″ circle, their resulting moment arm is 0.75″. A typical electronic device can be as wide as about 9.5″, or a torque arm of 4.75″. Dividing 4.75 into 0.75 yields a mechanical advantage of about 6.33:1. The resulting force necessary to break away the head unit 316 from its normal position is about 0.72 lbs. or 11.5 ounces when gripping the outside edge of the electronic device 12. The holding strength at the quadrants can be adjusted by magnet size and gap choice. A magnet to magnet attracting force has a self-aligning behavior which may eliminate sloppy positioning when compared to a magnet simply being attracted to a metal target. Since there is about a 9.12 lb. axial force inside the rotary joint 326, it might be preferred to have a Teflon™ slip disc 364 to eliminate the slip-stick friction between the magnet faces and head and socket surfaces.
These features noted above may also be applicable to the second and third embodiments of the holder 100, 200 illustrated in
As will be discussed in further detail below, the rotary joint 326 between the socket and the heat unit may also include 180-degree end stops 106 as provided in previous embodiments (please see
As in the second and third embodiments of the holder 100, 200, the rotary joint 326 may be provided with end stops 106 for the purpose of using the holder 302 itself as the torque arm to tighten or loosen the threaded nut 322 of the ball and socket connector 318. Without any rotation limits, the nut 322 could be difficult to tighten as the rotary joint 326 might allow the head 316 of the holder 302 to free wheel. The end stops 106 can be provided by tabs 112 that engage opposing surfaces 114. When a user wants to tighten or loosen the ball 320 of the ball and socket connector 318, the end stop 106 can be engaged to provide the needed torque.
Although in the foregoing description, terms such as “top”, “bottom”, “front”, “back”, “right”, “left”, “upper”, and “lower” may have been used for ease of description and illustration, no restriction is intended by such use of the terms. As discussed previously, the holders/stands and/or the holder systems described herein can be used in any orientation, depending upon the desired application.
Having described the preferred aspects and embodiments of the present disclosure, modifications and equivalents of the disclosed concepts may readily occur to one skilled in the art. However, it is intended that such modifications and equivalents be included within the scope of the claims which are appended hereto.
This application is a continuation of U.S. application Ser. No. 13/303,681, filed Nov. 23, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/460,700, filed Jan. 5, 2011, which applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3392950 | Pierce | Jul 1968 | A |
3428286 | Del Pesco | Feb 1969 | A |
D411544 | Richter | Jun 1999 | S |
D415771 | Richter | Oct 1999 | S |
6579017 | Wei | Jun 2003 | B2 |
D521990 | Richter | May 2006 | S |
D522843 | Richter | Jun 2006 | S |
D533053 | Brassard | Dec 2006 | S |
D533055 | Brassard | Dec 2006 | S |
7226026 | Lin | Jun 2007 | B2 |
D549709 | Richter | Aug 2007 | S |
D554042 | Richter | Oct 2007 | S |
7290740 | Joy et al. | Nov 2007 | B2 |
7320450 | Carnevali | Jan 2008 | B2 |
7500646 | Chapman | Mar 2009 | B2 |
7661648 | Lin | Feb 2010 | B2 |
7753330 | Brief | Jul 2010 | B2 |
7850133 | Carnevali | Dec 2010 | B2 |
7891615 | Bevirt | Feb 2011 | B2 |
7984886 | Lin | Jul 2011 | B2 |
D658651 | Lee et al. | May 2012 | S |
20040232291 | Carnevali | Nov 2004 | A1 |
20050092873 | Lin | May 2005 | A1 |
20050205724 | Carnevali | Sep 2005 | A1 |
20070018064 | Wang | Jan 2007 | A1 |
20070040080 | Carnevali | Feb 2007 | A1 |
20070278361 | May et al. | Dec 2007 | A1 |
20080035802 | Kim | Feb 2008 | A1 |
20080061197 | Carnevali | Mar 2008 | A1 |
20080093516 | Bevirt | Apr 2008 | A1 |
20080142675 | Lu et al. | Jun 2008 | A1 |
20080217826 | Kim | Sep 2008 | A1 |
20100237206 | Barker | Sep 2010 | A1 |
20130068915 | Yang | Mar 2013 | A1 |
Entry |
---|
International Search Report and Written Opinion mailed Jul. 30, 2012. |
Number | Date | Country | |
---|---|---|---|
20140224947 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61460700 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13303681 | Nov 2011 | US |
Child | 14101542 | US |