The present invention relates to a housing used for electronic devices and, more particularly, to a housing including at least a frame component formed of a metal matrix composite (MMC) material for providing improved stiffness over other lightweight materials currently in use.
Many types of electronic devices that are used for communication and/or entertainment purposes are relatively small; that is, configured to be “hand held”, portable, or mobile devices. While needing to be sufficiently rugged to protect the complex electronics and communication components forming such a device, its outer housing (also referred to at times as a chassis, case, or shell) also needs to be relatively thin and lightweight for comfort and convenience of the user.
In most cases, the outer housing includes a structural element (referred to at times herein as a “frame”) that is used to provide resistance to mechanical damage from bending (for example). Steel is an attractive construction material for this structural frame element, since it exhibits a high stiffness. However, steel also has a high density, which leads to high component mass. Aluminum is also an attractive construction material for the structural frame, since its density is significantly lower than steel. However, aluminum exhibits a very low stiffness, which leads to unwanted bending. Bending of an electronic device can lead to catastrophic damage. Indeed, there have been reports of consumer complaints regarding bending problems associated with these lightweight housings.
Besides the needs for lightweight, yet durable, consumer electronics housings, various commercial electronic devices (particularly, military devices) also derive benefits from a housing that provides the desired degree of stiffness/strength for a wide range of environmental factors, yet is lighter in weight than housings made of steel or other high-strength materials.
The needs of the prior art are addressed by the present invention, which relates to a housing used for electronic devices and, more particularly, to a component of the housing that is formed of a metal matrix composite (MMC) for providing improved stiffness over other lightweight materials currently in use.
In accordance with the present invention, an electronic device housing is formed to include a structural element comprised of an MMC material. The element may be configured as a structural frame member, or may be embedded within another material forming the frame. In another embodiment, the MMC may be used to form various components of the complete housing, including the enclosure itself. For the purposes of the present invention, as long as an MMC is utilized as at least a portion of a structural frame member, the desired improvement in housing stiffness is provided.
It is an aspect of the present invention that the utilization of an MMC-based structural frame elements provides both an increased stiffness (i.e., resistance to elastic deformation, such as bending) without an increase in mass, as well as an increase in strength (i.e., resistance to plastic deformation and/or breakage), where the latter quality is particularly provided by the utilization of an MMC that comprises a high aspect ratio of the reinforcement material (e.g., fibers or ceramics) with respect to the metal matrix constituent.
The MMC-based structural frame element of the present invention may be incorporated within a wide variety of “hand-held” electronic devices including, but not limited to, cell phones, tablets, pads, etc. The specifics of the device itself are not germane; as long as there is a need to maintain a stiffness in the device's housing while not unduly increasing the weight of the device, the MMC frame element of the present invention provides a solution. Indeed, as mentioned above, the utilization of an MMC-based frame element is also useful in a variety of commercial and/or military components (for example, as a chassis).
One exemplary embodiment of the present invention takes the form of an electronic device housing comprising at least one structural frame element comprising a metal matrix composite (MMC) material.
Another embodiment comprises housing for a hand-held electronic device comprising at least one structural frame element comprising a metal matrix composite (MMC) material.
Other and further embodiments and aspects of the present invention will become apparent during the course of the following discussion, and by reference to the accompanying drawings.
Referring now to the drawings, where like numerals represent like parts in several views:
In general, a metal matrix composite (MMC) is a material with at least two constituent parts—one being a metal and the other being a ceramic or organic compound (or even a different type of metal). MMCs are made by dispersing a reinforcing material into a metal matrix. The matrix itself is a continuous phase into which the reinforcement is embedded. In one exemplary design, carbon fiber is used as the reinforcing material with an aluminum matrix, creating composites exhibiting low density and high strength. In another example, an MMC is made of aluminum (Al) impregnated with ceramic particles, such as silicon carbide, to form Al/SiC MMCs. Instead of silicon carbide, aluminum oxide may be used to form Al/Al2O3 MMCs. Depending on the metal (matrix) type, reinforcement chemistry, reinforcement shape (e.g., particles, fibers, whiskers, etc.) and the ratio between the two components, a range of useful properties can be engineered. Indeed, the key properties/characteristics of MMCs that can be tailored include density, stiffness, ductility (elongation), strength, machinability, thermal behavior, and ability to be “surface treated” (that is, painted, anodized, plated, etc.).
For the purposes of the present invention, it is desirable to use such an MMC material in an electronic device housing so as to render the device essentially “unbendable”, while remaining lightweight and thin. In this context, unbendable means that the housing should be as stiff (i.e., rigid) as possible. It is to be noted that the utilization of a sufficiently stiff housing thus results in providing a whole electronic device that is also rigid. A measure of the stiffness of a material is provided by Young's modulus, which is measured in Pascal (Pa) or Newtons/m2 (in higher orders of magnitude, defined as GigaPascal—GPa or kilo-Newton/mm2).
An exemplary Young's modulus on the order of 125 GPa is acceptable for present purposes of providing a stiff structural frame for electronic device housings, and is associated with an Al—SiC MMC having 30% SiC. The Al—SiC MMC material exhibits a density on the order of aluminum, but with a stiffness of 125 GPa is much more rigid than aluminum (typical stiffness of Al is on the order of 70 GPa). This material can be formed using many different processes, such as but not limited to, die-casting, extrusion, forging, thixoforming, power metallurgy, and the like. Other materials, such as an Al—SiC MMC having 55% SiC (exhibiting a Young's modulus equivalent to stainless steel on the order of 200 GPa), may also be used. It is to be understood that there are a variety of different MMC materials that may be used for the purposes of the present invention, and the scope of the invention is not intended to be limited to any specific material, or class of materials. The metal matrix may be reinforced with any acceptable type of carbon fiber, ceramic fiber, ceramic particle or even another type of metal, where the type (and percentage) of reinforcement selected will result in an MMC with specific characteristics in terms of stiffness and strength.
As produced, MMC frame 10 is found to exhibit a combination of the desired properties for an electronic device structural frame: low mass (similar to aluminum) and high stiffness (similar to steel). Additionally, the relative strength (in terms of resistance to plastic deformation and/or breakage) of MMC frame 10 can be enhanced by using a formulation that contains a high aspect ratio reinforcement component (e.g., fiber, platelet, or the like).
As will be described in detail below, there are a variety of different configurations that may incorporate the inventive MMC-based structural frame element. Moreover, it is also possible to utilize more than one MMC-based element, where each comprises a different composite to tailor the structure to the specific needs of a specific device. Additionally, the MMC frame element itself may be formed to exhibit variations in composition, thickness, width, cross-section, and the like across its length; again, as required for a specific application. These and other features of the inventive MMC-based electronic device housing will be described in detail below.
In accordance with the present invention, the inclusion of a sufficiently stiff, rigid MMC insert 12 within the conventional lightweight material used as the structural framing element for an electronic device housing (e.g., aluminum or an aluminum alloy, magnesium or a magnesium alloy, or other) allows for the overall housing itself to be considerably stiffer, without requiring the housing to be any thicker or heavier. This is due to the fact that MMCs are much stiffer than aluminum (in fact, certain MMCs may be stiffer than steel), yet have a weight similar to aluminum. Moreover, inasmuch as the insert provides a sufficient stiffness for the overall electronic device housing, it is possible to form the housing itself of a relatively low cost, non-metallic, lightweight material (e.g., plastic, rubber, polymer, etc.). While providing an improved stiffness (which may be defined as resistance to elastic deformation, such as bending), specific compositions of an MMC may be selected that also provide an improvement in strength when compared to prior art housings (where in this context “strength” is defined as resistance to plastic deformation and/or breakage). For example, an MMC with high aspect ratio reinforcement material with respect to the metal matrix is known to provide this resistance to plastic deformation.
For the embodiment shown in
As shown in
While the various MMC-based structural elements described thus far take the shape of a single rectangle, it is to be understood that various other topologies for the MMC-based structural element may be utilized, particularly when desired to increase the rigidity and/or strength of the structure (such as for military applications, for example).
As mentioned above, an MMC-based structural element of the present invention may also take the form of an electronic device housing itself.
While useful in creating structural frame elements for “hand-held” electronic devices, MMC-based structural components may also find use, in accordance with the present invention as housings or enclosures for a variety of commercial or military electronic systems. Indeed, it is considered that various military systems where there is a need to maintain strength and rigidity with the lightest weight as possible, are potential uses.
Without limitation, the following is a listing of specific advantages and features of the present invention:
The above-described embodiments of the present invention are presented as being illustrative only of principles of the invention. Various modifications and changes can be made by those skilled in the art without departing from the scope and spirit of the present invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/180,097, filed Jun. 16, 2015 and herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62180097 | Jun 2015 | US |