This invention relates to a technique for controlling communication in an electronic device system, including devices, such as an Audio Visual device (hereinafter, “AV device”) that deals with visual information and audio information, and an information processing device, connected by a communication bus. Especially, the technique operates to prevent a use of the electronic device system that exceeds data the transfer capacity of the communication bus.
The IEEE 1394 serial bus is thought of as a network system that enables a transmission of data by isochronous communication and a transmission of a control signal by asynchronous communication between an AV device and an information processing device. The IEEE 1394 serial bus is standardized to “IEEE STD 1394-1995” as “IEEE STANDARD FOR A HIGH PERFORMANCE SERIAL BUS.” As an example of using IEEE 1394 serial buses, Japanese published unexamined patent application No. H08-47058 describes that “a method for selecting input devices” that can display only the identification of a device that is able to output an information signal, as an input available device in a system that is connected to a plurality of electronic devices by way of a communication bus.
Further, an “AV/C Digital Interface Command Set”, which includes control signals to control an AV device for playback and recording of AV data by using a 1394 IEEE serial bus, has been opened to the public by the “1394 Trade Association.” However, in the standard technique for the IEEE 1394 serial bus, in case a plurality of electronic devices perform isochronous communication simultaneously, the available band width and number of channels of the bus are exceeded, and so some of the electronic devices that try to perform communication can not use the bus because of the short available band width and limited number of channels of the bus.
Consider a case wherein, in a network, for example, in which a digital receiver IRD (hereinafter “IRD”) is connected to a device such as a digital videotape recorder D-VTR (hereinafter “D-VTR”), a reserved recording is performed by the network. When the other electronic devices that are connected in the network use the bus during the reserved recording time, and the bus width that the IRD wants to use is larger than the available bus width at that time, the IRD cannot secure the necessary bus width. As a result, the reserved recording cannot be performed because data cannot be satisfactorily transmitted from the IRD to the D-VTR.
Further, in the input device selection method and AV/C Digital Interface Command Set, a method of selecting the input device at the present time, and a method of transmitting the data and the control signals at the present time are only considered.
The main object of the present invention is to solve the foregoing problems.
In the case of an electronic device system in which an AV device and an information processing device are connected by a communication bus, and a reserved playback time and a reserved picture recording time are established, an inquiry is made of the connected devices to obtain information about each reservation. Then, on the basis of answer information received from the devices, it is determined how to perform a reservation for a communication resource, so that a usage that exceeds the transfer capacity of the communication bus is prevented, thereby allowing the reservation by the communication resource to be accepted.
Further, in accordance with this invention, in case a reservation or an immediate communication is impossible, the reason for this can be displayed. In addition, in case usage of a bus is prohibited because other devices have reserved the bus, the reason for this can be displayed.
This invention relates in particular to a system in which a device, such as AV device, is connected to an information processing device by a bus. In order to communicate in a reliable manner on the bus, a device that can perform data reproduction in the system inquires of the connected devices for reservation information. Responsive to an answer from the connected devices, the device has an element that can judge the availability of the bus transferring capacity not so as not to exceed the capacity of the bus. Therefore, a device that wants to use the bus can perform an information transfer. Further, by judging whether the above-mentioned usage of the bus is available, in a case where it is impossible to use the bus, the device has an element that communicates the reason to a video display device. Therefore, the device can perform an appropriate setting for the reservation to avoid problems in the use of the bus.
a) and 3(b) are diagrams illustrating examples for securing a bus reservation according to the preferred embodiment of the invention.
a) and 4(c) are diagrams is a drawing illustrating an example for securing immediate communication according to the preferred embodiment of the invention.
With reference to the drawings, a preferred embodiment of the present invention will be explained. In the preferred embodiment of the present invention, especially, one that involves a system of electronic devices, such as an AV device and an information processing device, that are connected by a bus, which is available for isochronous communication, like an IEEE 1394 bus, it is possible to effect a bus usage reservation and to effect immediate isochronous communication in a trouble free manner.
The isochronous communication on a IEEE 1394 serial bus is performed approximately every 8 KHz (KILOHERTZ). That is a secured data transmission mode of a transmission band. The data transfer is performed by packet transmission, and the packet data consists of a header part and a data part, wherein the header part stores information, such as a channel number and a transmission data size, and the data part stores transmission data in units of 4 bytes. Further, in IEEE 1394, there is an asynchronous data transmission mode that is called asynchronous communication. The asynchronous communication mode is mainly used for transmission of a command.
As disclosed in
The following cases represent ways in which a communication on the bus can be established.
While the case (1) provides bus width security for an appointed time zone, the case (2) can be thought of as providing bus width security, without an appointed time zone, from the present time.
For example, in case the TRD103 wants to secure a particular bus width for a time zone in the future, as shown in
On the other hand, in case the IRD103 wants to secure a certain bus width to perform immediate communication, as shown in
The process to secure a reservation for a communication resource for a time in the future in the case (1), will be explained with reference to the flowchart of
First there will be an explanation of the process carried out in the case of
In step 502, an answer, including data representing the immediate communication information and the reservation information for the bus, information which represents bus usage information, is received. The answer is received by the communication unit 205, and the received data are stored in the working memory 209. For example, the communication unit 205 receives data indicating a current available bus width 1000 and channel information 1001 from the isochronous manager 107, as shown in
In step 503, a user inputs usage information indicating a desired use of the bus (hereinafter “reservation-desired data”) relating to the bus usage, such as a desired time period for reservation of the bus. The data is inputted via the input unit 201 and is stored in the working memory 209. For example, as shown at 1101 of
In step 504, it is determined whether the reservation is possible. The reservation-desired data stored in the working memory unit 209, the received immediate communication information, and the received reservation information are compared. The CPU 203 performs the judgment using a scan process of examining whether the requested time period that is to be reserved is already reserved. It is also possible to subtract the bus width designated in the reservation request from the maximum bus width that is available in the requested time period and to perform the required judgment to determine if the reservation is possible by well-known processing. As seen in
In step 505, the reservation-desired data is stored as bus usage information, and then the process advances to step 506. The reservation usage information is stored to the memory 204.
The following is an explanation of the process carried out in the case of
In step 503, a user inputs the reservation-desired data, such as a desired time period for reservation of the bus. The data is inputted via the input unit 201 and is stored in the working memory 209. However, in this case, if the IRD 103 makes a reservation that is more than 70 MBPS (MEGA BIT PER SECOND) for the time period from 19:00 to 21:00 on December 14, the bus width that is available for that time period will be insufficient. In step 504, therefore, when the possibility of reservation of the time period is considered, it is determined that the reservation is impossible, and so the process will advance to step 507. In step 507, the reason why the reservation is not possible is displayed, as seen at 1201 in
In step 508, it determines whether the request for a reservation is to be retried or ended. For example, a character line requesting whether the reservation is to be retired or ended is displayed on the display unit 202, and then the user inputs a selection via the input unit 201. The inputted selection information is judged by the CPU 203 to determine whether the process is to advance to step 503 or to step 506. As mentioned above, the device that seeks to obtain the reservation requests reservation information from the devices connected to the bus. Then, a determination as to the possibility of obtaining the reservation is performed based upon the answer information received from other devices and the information received from the bus manager. Even in a case where a reservation cannot be granted because there already is another reservation for the same time period reserved by other devices, a reservation may be canceled by judging the priority of each user in the IRD103 and granting a reservation to the user having a higher priority.
Next, the process to secure a reservation for a communication resource from the present time to effect an immediate communication in the case (2) will be explained with reference to the flowchart of
The following is an explanation of the process carried out in the case of
Step 1300 is performed at the time of the start of immediate communication operation. The starting of the immediate communication operation involves execution of an immediate communication processing program stored in the ROM 210 after the CPU 203 senses actuation of an immediate communication starting button via the input unit 201. In step 1301, the IRD 103 responds to an inquiry from the CPU 203 by sending a request for immediate communication information and reservation information to the isochronous manager 107 and the devices connected to the bus. Then, as shown in
In step 1302, an answer including data representing the immediate communication information and the reservation information is received in the communication unit 205, and this data is stored in the working memory unit 209. For example, the communication unit 205 receives data indicating a current available bus width 1000 and channel information 1001 from the isochronous manager 107, as shown in
In step 1303, the bus width that is necessary for the communication of data, that is, desired bus usage information, is inputted and is stored in working RAM 209. For example, as shown at 1401 in
In step 1304, it is determined whether the immediate communication is possible. The answer data and the immediate communication data are compared. The CPU 203 performs the judgment using a scan process of examining whether the requested time period that is to be reserved has already been reserved. It is also possible to subtract the bus width designated in the reservation request from the maximum bus width that is available in the requested time period and to perform the required judgment to determined if the reservation is possible by well-known processing. The available bus width that can be used at present is 80 MBPS, and the D-VTR has reserved use in the interval from 19:00 to 20:00 in the time zone in the future. Since the available bus width in the time period remains 50 MBPS, if the secured 20 MBPS for the immediate communication is subtracted from the available bus width, it can be seen that the 20 MBPS bus width for the immediate communication of the IRD 103 is available, and so the process advances to step 1305.
In step 1305, the immediate communication information is stored in the memory 204, and then the process advances to step 1306.
In step 1303, for example, a designation of 60 MBPS as the bus width that is necessary for immediate communication is stored in the working RAM 209. In this case, in step 1304, because the bus width is insufficient in the reserved time period of the D-VTR 101, it is judged that the bus width necessary for the immediate communication cannot be secured, and the process advances to step 1307. In step 1307, the reason why the immediate communication cannot be allowed is displayed, as seen at 1501 in
The following is an explanation of the process carried out in the case of
In step 1303, it will be assumed that a designation of bus width that is larger than 90 MBPS, representing the bus width that is necessary for the immediate communication, is stored in the working RAM 209. In this case, in step 1304, it is determined that the necessary bus width for the immediate communication is not available because the bus width is already insufficient at present, and so the process advances to step 1307. In step 1307, the reason why immediate communication cannot be allowed is displayed, and the process advances to step 1308. In step 1308, it is determined whether the request for immediate communication is to be retried again or ended. As mentioned above, the device that tries to obtain a reservation for use of the bus requests immediate communication information and reservation information from the devices connected to the bus. Then, the judgment as to the possibility of obtaining a reservation is performed based upon the answer information received from the other devices and the information received from the bus manager. Even in a case where the immediate communication cannot be allowed because of another reservation in the same time period, which is reserved by other devices, a reservation may be canceled by judging the priority of each user in the IRD103 and canceling in a reservation having a lower priority, thereby making immediate communication possible.
In this embodiment, the possibility of obtaining a reservation is determined in step 504, however, a restriction of the band width and channel number can be effected so as to allow immediate communication in a reserved time period easily. For example, if the band width and channel are set such that only 80% of the maximum value of each bus width and channel number are possible to make the reservation using a reservation processing program stored in the ROM 210, at least 20% of the maximum value of each bus width and channel number will be available for an immediate communication, even in a reserved time period.
Further, the system can display the tackling method that is reserved in which reservation of which device is canceled in the cases that it isn't possible to reserve the bus. Then, to secure the needed bus width when the bus width runs short, a calculation is made as to which reservation of other devices has to be canceled by the CPU 203 in the reservation processing of step 504, and the result is displayed on display unit 202 so that a reservation on reservations selected by the user may be canceled.
In the above-mentioned embodiment, all devices reply to a demand for bus usage information, but this can be performed with only the reservation device which is going to communicate in the future or communicate immediately.
In
In step 1600, the process starts when the answer requirement packet is received. It is judged whether the communication unit 205 receives the packet including the function code of the answer requirement issued by the CPU 203, and, if the packet has been received, execution of an answer processing program stored in ROM 210 is started. In step 1601, the function code is decoded. The CPU 203 refers to the function code table in ROM 210 for this purpose, and the function code is interpreted. In step 1602, in case the function code is an answer requirement concerning a current usage or the present of a reservation, the process advances to step 1603. In case it is another function code, the process advances to step 1606.
In step 1603, the answer processing is performed. The CPU 203 refers to the memory 204 in order to examine whether the bus is reserved or is being used for immediate communication by its own device. If there is reservation information and immediate communication information, that information is expanded to the working RAM 210 and is adjusted to an answer format. If there is no reservation information and immediate communication information, the process advances to step 1605. In step 1604, an answer packet is transmitted. The answer packet adjusted to the answer format is transmitted from the communication unit 205. The program is ended in step 1605. The answer-processing program in the ROM 210 is ended. In step 1606, the CPU 203 performs the processing that corresponds to the function code, and the process advances to step 1605.
By this procedure, only the devices that have established a reservation or are involved in immediate communication can respond. Further, for example, IRD103 sends information identifying the time period that is to be reserved to each device, but only those devices that have a reservation during the same time period or that are using the bus at present can respond. In this case, the information identifying the time period that IRD103 wants to reserve is added to the function code 701. Further, for example, in the reservation answer processing program of the D-VTR 101, in step 1304, the D-VTR 101 judges if there is a reservation during the desired time period or there is a usage of the bus at present, and it may determine as a result whether it will send as answer packet.
Further, a priority of the bus usage and the granting of reservations can be set up. This will be explained with reference to
Further, it is assumed that a device is plugged or unplugged in the IEEE 1394 network and that a bus reset has occurred in
Further, in the above-identified embodiment, in step 507, a warning screen is displayed as a means for displaying the reason why a reservation is impossible. However, the warning screen can be displayed on not only the TV monitor, but also on a liquid crystal screen of a remote-controller or an operation panel of a electronic device or a display apparatus. Instead of the warning screen, a warning sound, an audio message, or music may be outputted to an audio output device. In addition to that, a means that a user can visually recognize, such as a warning using a blinking light emitting diode, can be employed.
As mentioned above, since this invention is able to prevent a reservation that will exceed the bus transferring capacity, a reliable communication, such as at the time of recording, can be performed. Further, in case the reservation of the bus is impossible, the user can take steps to adjust the conditions to allow communication because the reason why the reservation is impossible is displayed.
Further, there is a case wherein, when a device attempts to start an immediate communication after having secured the bus, the device may not be able to complete the communication on the bus as a result of a reservation of the bus by another device in the future. In the case of a device that desires to effect an immediate communication or reserve a communication time, but cannot perform the communication because of bus usage, this invention gives a warning to the user by displaying information giving the reason for the problem.
The present application is a continuation of application Ser. No. 09/381,395, filed Dec. 13, 1999 which is a 371 of PCT/JP97/00933, filed March 21, now U.S. Pat. No. 6,757,765, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4805106 | Pfeifer | Feb 1989 | A |
5001707 | Kositpaiboon et al. | Mar 1991 | A |
5052029 | James et al. | Sep 1991 | A |
5457446 | Yamamoto | Oct 1995 | A |
5506969 | Wall et al. | Apr 1996 | A |
5579486 | Oprescu et al. | Nov 1996 | A |
5621898 | Wooten | Apr 1997 | A |
5673393 | Marshall et al. | Sep 1997 | A |
5689507 | Bloks et al. | Nov 1997 | A |
5784569 | Miller et al. | Jul 1998 | A |
5819043 | Baugher et al. | Oct 1998 | A |
5828656 | Sato et al. | Oct 1998 | A |
5835714 | Herzl et al. | Nov 1998 | A |
5951664 | Lambretch et al. | Sep 1999 | A |
5978875 | Asano et al. | Nov 1999 | A |
6058450 | LaBerge | May 2000 | A |
6073197 | Stewart | Jun 2000 | A |
6131111 | Yoshino et al. | Oct 2000 | A |
6185360 | Inoue | Feb 2001 | B1 |
6307842 | Nakata et al. | Oct 2001 | B1 |
6757765 | Fukushima et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
0426323 | May 1991 | EP |
0426323 | Jan 1996 | EP |
0715261 | Jun 1996 | EP |
0921472 | Mar 1997 | EP |
0977401 | Mar 1997 | EP |
3147151 | Jun 1991 | JP |
4346598 | Dec 1992 | JP |
5242002 | Sep 1993 | JP |
6244842 | Sep 1994 | JP |
7336374 | Dec 1995 | JP |
9125670 | May 1996 | JP |
8228200 | Sep 1996 | JP |
927814 | Jan 1997 | JP |
951344 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040215855 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09381395 | US | |
Child | 10847874 | US |