Electronic device mount

Information

  • Patent Grant
  • 7925320
  • Patent Number
    7,925,320
  • Date Filed
    Monday, March 6, 2006
    18 years ago
  • Date Issued
    Tuesday, April 12, 2011
    13 years ago
Abstract
Embodiments of the present invention provide an electronic device mount (10) operable to provide navigation information to an electronic device (D). The mount (10) generally includes a housing (12) operable to securely retain the electronic device (D) and removably couple with a surface. The housing (12) preferably encloses or supports various portions of an antenna (14), a processor (18), and/or a transmitter (16). The antenna (14) is operable to receive a navigation signal, the processor (18) is operable to generate navigation information utilizing the received navigation signal, and the transmitter (16) operable to wirelessly transmit the generated navigation information to the electronic device (D). Such a configuration enables the electronic device (D) to receive navigation information from the mount (10) while being compactly and securely retained.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to electronic device mounts. More particularly, the invention relates to an electronic device mount that is operable to provide navigation information to an electronic device.


2. Description of the Related Art


Navigation devices are becoming increasingly popular due to the many versatile functions they provide. Navigation devices typically include location determining components, such as Global Positioning System (GPS) receivers, and processing elements operable to provide navigation information such as desired routes of travel from current geographic locations to desired geographic locations. Although navigation devices have traditionally been stand-alone devices, many manufacturers are now integrating navigation functions into other electronic devices such as cell phones, personal digital assistants (PDAs), exercise devices, etc. Unfortunately, due to the size of location determining components and processing elements, it is often difficult or impossible to compactly integrate navigation devices into other electronic devices.


To eliminate the need to include location determining components and processing elements within otherwise compact housings, electronic devices have been developed that are operable to couple with conventional navigation devices to receive navigation information. Although such devices are operable to receive navigation information without incorporating integral location determining components, they require complicated and cumbersome coupling with discrete navigation devices.


SUMMARY OF THE INVENTION

The present invention solves the above-described problems and provides a distinct advance in the art of electronic device mounts. More particularly, the invention provides an electronic device mount that is operable to wirelessly provide navigation information to an electronic device. Such a configuration enables the electronic device to receive navigation information from the mount while being compactly and securely retained.


In one embodiment, the present invention provides a mount including a housing operable to securely retain an electronic device and removably couple with a surface. The housing preferably encloses or supports various portions of an antenna, a processor, and/or a transmitter. The antenna is operable to receive a navigation signal, the processor is operable to generate navigation information utilizing the received navigation signal, and the transmitter operable to wirelessly transmit the generated navigation information to the electronic device.


In another embodiment, the mount comprises a housing including a front portion, a rear portion generally opposed to the front portion, and a plurality of spring-biased posts positioned around a least a portion of the periphery of the front portion and operable to securely retain an electronic device. The rear portion includes a mounting element operable to removably couple with a surface.


In another embodiment, the mount includes a housing operable to securely retain an electronic device and removably couple with a surface. The housing preferably encloses or supports various portions of an antenna, a processor, and/or a transmitter. The antenna is operable to receive a navigation signal, the processor is operable to generate navigation information utilizing the received navigation signal, and the transmitter operable to wirelessly transmit the generated navigation information to the electronic device. The housing generally comprises a front portion, a rear portion generally opposed to the front portion, and a plurality of spring-biased posts positioned around a least a portion of the periphery of the front portion and operable to securely retain the electronic device. The rear portion includes a mounting element operable to removably couple with the surface.


Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

A preferred embodiment of the present invention is described in detail below with reference to the attached drawing figures, wherein:



FIG. 1 is a perspective view of an electronic device mount configured in accordance with various preferred embodiments of the present invention;



FIG. 2 is a cross-sectional view of the electronic device mount of FIG. 1;



FIG. 3 is a rear-sectional view of the electronic device mount of FIGS. 1-2;



FIG. 4 is a perspective view of an alternative embodiment of the electronic device mount of FIGS. 1-3;



FIG. 5 is a perspective view of the electronic device mount of FIGS. 1-3, the mount shown receiving a cellular phone;



FIG. 6 is a perspective view of the electronic device mount of FIGS. 1-3 and 5, the mount shown securely retaining the cellular phone;



FIG. 7 is an exploded view of a mounting apparatus operable to be utilized by the electronic device mount of FIGS. 1-6;



FIG. 8 is a side view showing the electronic device mount of FIG. 6 retaining the cellular phone and coupled with an automobile windshield utilizing the mounting apparatus of FIG. 7;



FIG. 9 is a perspective view showing the electronic device mount of FIG. 8 coupled with an automobile cigarette lighter;



FIG. 10 is a perspective view of a post and a slide operable to be utilized by the electronic device mount of FIGS. 1-9;



FIG. 11 is another perspective view of the post and slide of FIG. 10;



FIG. 12 is a top view of the post of FIGS. 10-11;



FIG. 13 is a top view off an alternative embodiment of a post that may be utilized by the electronic device mount of FIGS. 1-11;



FIG. 14 is a block diagram showing some of the elements that may be utilized by the electronic device mount of FIGS. 1-10; and



FIG. 15 is schematic diagram of a Global Positioning System (GPS) that may be utilized by various embodiments of the present invention.





The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.


Referring to FIGS. 1-15, the mount 10 generally includes a housing 12 operable to securely retain an electronic device D and removably couple with a surface. The housing 12 may retain the electronic device D and removably couple with the surface utilizing various conventional connectors and coupling elements. For example, the housing 12 may securely retain the electronic device D and/or couple with the surface utilizing straps, latches, adhesive elements, hook and loop fasteners such as Velco®, fitted recesses or slots, suction elements, combinations thereof, etc. By securely retaining the electronic device D, the housing 12 prevents the electronic device D from being dislodged or damaged during potentially turbulent driving environments. However, preferred mounting and coupling elements are described below in more detail.


The electronic device D may be any device operable to utilize navigation information. Preferably, the electronic device D is a cellular phone, personal digital assistant (PDA), or a portable entertainment device operable to utilize received navigation information for processing, calculation, configuration, or display. As discussed below, the electronic device D is preferably operable to receive wireless information from the mount 10. In various embodiments the electronic device D may be a Bluetooth equipped cellular phone operable to transmit and receive information to and from the mount 10.


In one embodiment of the present invention, the housing 12 is operable to enclose or support various portions of an antenna 14, a processor 18 coupled with the antenna 14, and a transmitter 16 coupled with the processor 18. The processor 18 is generally operable to process signals received by the antenna 14 and the transmitter 16 is generally operable to wirelessly transmit information processed by the processor 18.


The antenna 14 may be any element or combination of elements operable to receive and/or detect electromagnetic energy. Preferably, the antenna 14 is operable to receive a navigation signal such as a Global Positioning System (GPS) signal. Thus, the antenna 14 may be, for example, an antenna utilized by a GPS receiver much like those provided in Garmin® products and disclosed in U.S. Pat. No. 6,434,485, which is incorporated herein by specific reference.


Additionally or alternatively, the antenna 14 may be operable to receive navigation signals other than satellite-originated GPS signals. For example, the antenna 14 may receive cellular or land-based radio-frequency navigation signals. Further, the antenna 14 may be operable to receive digital signals, such as wireless network signals. Thus, the antenna 14 is not necessarily strictly limited to a GPS antenna.


As is discussed in more detail below and shown in FIG. 2, the antenna 14 is preferably compactly configured for retention entirely within the housing 12. Such a configuration is desirable as it provides a smooth contour for the housing 12 without any potentially dangerous projections or aesthetically unpleasing elements. Alternatively, the antenna 14 may be external or removable from the housing 12, such as by being configured to screw or snap into a port provided on the housing 12. Thus, in some embodiments the antenna 14 may include only a port or receptacle for receiving an external navigation antenna.


The processor 18 is coupled with the antenna 14 and operable to generate navigation information utilizing the navigation signals received by the antenna 14. The processor 18 is preferably discrete from the antenna 14 and directly or indirectly coupled thereto via wired or wireless connections. However, in various embodiments the processor 18 and the antenna 14 may be integral such as where the processor 18 and antenna 14 form a part of the same integrated circuit or are positioned within a common circuit housing.


The processor 18 processes the received navigation signals to generate any type of navigation information in a substantially conventional manner. For instance, the generated navigation information may include a current geographic location of the mount 10, a previous geographic location of the mount 10, a speed of the mount 10, a distance traveled by the mount 10, a route from the current geographic location to a destination, a map corresponding to a determined geographic location, combinations thereof, etc. Further examples of the navigation information that may be generated by the processor 18 utilizing the received signals are disclosed in U.S. Pat. No. 6,947,838, which is incorporated herein by reference.


As discussed above, the navigation signals acquired by the antenna 14 may correspond to spread spectrum GPS signals that may be utilized by the processor 18 to calculate the current geographic location of the mount 10. FIG. 15 shows one representative view of a GPS denoted generally by reference numeral 102. A plurality of satellites 104 are shown in orbit about the Earth 100. The orbit of each satellite is not necessarily synchronous with the orbits of other satellites and, in fact, is likely asynchronous. The mount 10, including the antenna 14 and processor 18, is shown receiving spread spectrum GPS satellite signals from the various satellites 104.


The spread spectrum signals continuously transmitted from each satellite 104 utilize a highly accurate frequency standard accomplished with an extremely accurate atomic clock. Each satellite 104, as part of its data signal transmission, transmits a data stream indicative of that particular satellite and timing information. To calculate location, the antenna 14 acquires spread spectrum GPS satellite signals from at least three satellites for the processor 18 to calculate its two-dimensional position by triangulation. Acquisition of an additional signal, resulting in signals from a total of four satellites, permits the processor 18 to calculate its three-dimensional position.


As should be appreciated, the processor 18 may utilize any method of generating navigation information and is not limited to the GPS-triangulation method discussed above. For example, the received navigation signal may include an encoded signal that the processor 18 decodes to reveal its location or other navigation information, the received navigation signal may correspond to digital information that is processed by the processor 18 to provide navigation information, and/or the received signal may directly provide navigation information with minimal involvement from the processor 18 such as a geographic map, a waypoint, a route or destination, etc.


Preferably, the mount 10 additionally includes a memory 20 coupled with the processor 18. The memory 20 may be integral or discrete with the processor 18 and may comprise dynamic and static memory components. The processor 18 may utilize the memory 20 to store data and information corresponding to the signals received by the antenna 14 including generated navigation information such as the current geographic location of the mount 10. Further, the processor 18 may utilize the data and information stored within the memory 20 to generate other navigation information, such as the distance traveled by the mount 10, the speed of the mount 10, the route traveled by the mount 10, the position of the mount 10 on a calculated route, etc.


The processor 18 may additionally process and generate information other than navigation information. For instance, the processor 18 may provide general processing capabilities and generate control information to control the functionality of the other mount components, such as the transmitter 16 and antenna 14.


The processor 18 may be any element or combination of elements operable to generate navigation information as discussed above. Thus, the processor 18 may include an application specific integrated circuit (ASIC), a programmable logic device (PLD) such as a field programmable gate array (FPGA), one or more discrete logic elements, a microprocessor, a microcontroller, combinations thereof, etc.


The transmitter 16 is operable to wirelessly communicate with the electronic device D. The transmitter 16 is coupled with the processor 18 and/or memory 20 to transmit navigation information generated by the processor 18, stored within the memory 20, and/or otherwise provided by or through the mount 10. The transmitter 16 is preferably also operable to wirelessly receive information from the electronic device D and provide the received information to the processor 18 and/or store the received information within the memory 20.


For instance, the transmitter 16 may be operable to transmit the current geographic location of the mount 10, a speed of the mount 10, or any other information generated by the processor 18, to the electronic device D. Preferably, the transmitter 16 continuously transmits navigation information and/or transmits navigation information at periodic intervals to enable the electronic device D to be regularly provided with current navigation information. However, in some embodiments the transmitter 16 may only transmit navigation information after wirelessly receiving a request from the electronic device D or when the mount 10 is otherwise functioned.


Further, the transmitter 16 is additionally operable to transmit non-navigation related information. For instance, as discussed below in more detail, the transmitter 16 is operable to transmit and receive audio information, such as signals corresponding to speech, to and from the electronic device D. Such a configuration enables the mount 10 to function as a “hands-free” device to provide speakerphone and other functional capabilities to the electronic device D without requiring a user to touch the electronic device D. Thus, the transmitter 16 may transmit and receive both navigation information and audio information to and from the electronic device D.


The transmitter 16 may comprise any device or combination of devices operable to wirelessly transmit information, including radio-frequency (RF) transmitters, optical transmitters, infrared transmitters, wireless fidelity (WiFi) devices, ultra wideband (UWB) devices, Global System for Mobile (GSM) communication devices, Code Division Multiple Access (CDMA) devices, Worldwide Interoperability for Microwave Access (Wi-Max) devices, other 802.11 compliant devices, combinations thereof, etc.


In some applications requiring two-way communication, the transmitter 16 may be replaced with a transceiver. For example, in the preferred embodiment, the transmitter 16 is capable of both transmitting and receiving, and may therefore actually be a transceiver. Of course, even in the preferred embodiment, it is still possible to add a separate and discrete receiver to supplement the transmitter 16.


Preferably, the transceiver 16 is a Bluetooth compatible transceiver operable to wirelessly send and receive data to and from other Bluetooth compatible devices. As is known in the art, Bluetooth compatible devices may be configured to wirelessly communicate with up to seven discrete devices to form a piconet. Utilizing the Bluetooth protocol, devices may easily and wirelessly share information. Thus, utilization of the Bluetooth protocol enables the transmitter 16 to readily communicate with the electronic device D, and other electronic devices, utilizing a standard protocol.


The transmitter 16 preferably includes an antenna, separate from the antenna 14, to enable transmission and reception of electromagnetic signals, such as Bluetooth signals. However, the antenna utilized by the transmitter 16 may be the same, or integral with, the antenna 14 to reduce component space.


In various embodiments the mount 10 may additionally include a microphone 22 and a speaker 24. The microphone 22 is operable to record and/or detect sounds and the speaker 24 is operable to generate sound in a substantially conventional manner. The microphone 22 and the speaker 24 are preferably each coupled with the processor 18 and/or the transmitter 16 to facilitate the hands-free functionality discussed above.


Audio information, such as sounds and speech recorded by the microphone 22, may be stored within the memory 20 and/or otherwise utilized by the processor 18. In various embodiments, the transmitter 16 is operable to transmit audio information corresponding to sounds recoded by the microphone 22 to the electronic device D. Similarly, the speaker 24 is operable to generate sounds utilizing audio information received by the transmitter 16, such as sounds corresponding to a call received by a cellular phone, and/or stored within the memory 20.


Thus, the user may utilize the mount 10 to provide generally conventional hands-free functionality. As is known in the art, cellular phones and other communication devices are often equipped with “hands-free” functionality to enable users to talk and listen with the devices without being required to hold or retain them. Instead of directly talking into the electronic device D, the user's speech may be recorded by the microphone 22 and transmitted to the electronic device D and instead of directly listening to the electronic device D, the speaker 24 may generate sounds corresponding to audio information received by the transmitter 16. As such, the mount 10 is operable to generally simultaneously provide both navigation information and hands-free functionality to the electronic device D.


Further, the microphone 22 may comprise a plurality of microphones to provide noise cancellation abilities to the mount 10. For example, the mount 10 may include one or more microphones positioned on each side of the housing 12 to enable each microphone to independently record sound. The audio information generated utilizing each microphone may then be compared by the processor 18, or another mount 10 element, to cancel background noise or any other audio not corresponding to the user's speech. The transmitter 16 may transmit the noise-canceled audio information to the electronic device D to provide an accurate representation of the user's speech.


The mount 10 also preferably includes a coupling element 26 operable to electrically couple the mount 10 and the electronic device D and a power source 28 operable to provide power to the mount 10 and the electronic device D. As shown in FIG. 8, the coupling element 26 may comprise a conventional cable operable to provide electrical power from the mount 10 to the electronic device D. However, the coupling element 26 may comprise any element or combination of elements operable to propagate electrical energy between the mount 10 and the electronic device D. Utilization of the coupling element 26 enables the electronic device D to be powered and charged by the mount 10 when securely affixed thereto to conserve the primary power supply of the electronic device D.


The power source 28 may be any element or combinations of elements operable to provide electrical power to the mount 10. Preferably, the power source 28 also provides electrical power to the electronic device D through the coupling element 26 as discussed above. The power source 28 may be integral with the housing 12, such as in embodiments where the power source 28 comprises batteries.


Preferably, the power source 28 comprises a cable operable to relay electrical power from an external device to the mount 10. As shown in FIG. 9, the power source 28 more preferably comprises a cigarette lighter adapter operable to interface with an automobile cigarette lighter outlet and a cable extending from the adapter to provide electrical power from the automobile cigarette lighter outlet to the mount 10.


The power source 28 may additionally include transformers, voltage regulators, or other elements operable to condition power for utilization by the mount 10 and the electronic device D. Through utilization of the coupling element 26, the present invention is operable to provide electrical power to both the mount 10 and the electronic device D utilizing only one automobile cigarette lighter outlet. Such a configuration reduces the number of cables and adapters present in the automobile without restricting the use of navigation information or other mount functionality.


The housing 12 is operable to securely retain the electronic device D and house various portions of the mount 10. Preferably, the housing 12 houses at least portions of the antenna 14, the processor 18, the transmitter 16, the memory 20, the microphone 22, and the speaker 24. However, as should be appreciated, the housing 12 may house any combination of the mount elements, including only portions of the processor 18 and the transmitter 16.


In preferred embodiments, the housing 12 includes a front portion 30, a rear portion 32 generally opposed to the front portion 30, and a plurality of posts 34 positioned around at least a portion of the periphery of the front portion 30 to securely retain the electronic device D therebetween.


The front portion 30 is generally operable to abut at least a portion of the electronic device D when the electronic device D is retained between the posts 34, as shown in FIGS. 5-6. Thus, the front portion 30 preferably presents a generally flat profile to enable the electronic device D to easily abut, contact, and/or slide against the front portion 30 without damage to the housing 12 or the electronic device D.


The rear portion 32 includes a mounting element 36 operable to couple with the surface. The mounting element 36 may include any element operable to couple the housing 12 to the surface, including the various coupling elements discussed above, such as latches, adhesives, suction elements, etc.


As shown in FIGS. 2 and 7-8, the mounting element 36 preferably includes a base 38 operable to removably couple with the surface and a socket assembly 40 operable to removably couple with the base 38. The base 38 and socket assembly 40 are substantially similar to the base and socket assembly disclosed in co-pending and commonly assigned U.S. patent application Ser. No. 11/304,836, filed Dec. 15, 2005, entitled “SEPARABLE BALL AND SOCKET ASSEMBLY FOR ELECTRONIC DEVICE MOUNTS”, which is incorporated herein by reference.


The socket assembly 40 is preferably integral with the rear portion 32 of the housing 12 to enable the housing 12 to be pivoted and rotated by the user about the base 38 to achieve a desired position. However, in various embodiments the socket assembly 40 may be removably coupled with the housing 12 to enable the socket assembly 40 to be independently coupled with the base 38.


As shown in FIG. 7, the base 38 preferably includes a circular platform 42 operable to removably mount to the surface, an arm 44 extending from the platform 42, and a mounting ball 46 positioned on a distal end of the arm 44. The circular platform 42 may removably mount to the surface utilizing various methods and devices, such as by utilizing mating components, adhesive elements, hook and loop fasteners such as Velcro®, latches, etc. Preferably, the circular platform 42 removably mounts to the surface utilizing suction. For instance, the circular platform 42 may include a flexible sheet 48 for creating a vacuum-seal with the surface.


The circular platform 42 may additionally include a lever 50 coupled with the flexible sheet 48 to engage the sheet 48 to facilitate suction mounting of the base 38 to the surface. The flexible sheet 48 may also include a tab to facilitate removal of the base 38 from the surface by breaking the vacuum seal between the flexible sheet 48 and the surface.


The arm 44 extends from the platform 42 to facilitate coupling with the socket assembly 40. Preferably, the arm 44 is rotatably coupled with the platform 42 to enable the arm 44 to rotate with respect to the base 38. The arm 44 may be rotatably coupled with the circular platform 42, or other portions of the base 38, utilizing various devices and methods, such as hinges, pivoting elements, flexible elements, etc. For instance, the circular platform 42 may include a raised axle 52 around which the arm 44 is operable to pivot.


The rotatable coupling of the arm 44 and the platform 42 preferably enables the arm 44 to be rotated by a user when force is applied but resists rotation of the arm 44 relative to the base 38 in the absence of user applied force. Thus, friction is preferably provided between the arm 44 and the circular platform 42, such as by having the axle 52 fit snugly through the arm 44 or by utilizing a hinge having resistive properties, to prevent inadvertent movement of the arm 44.


The ball 46 is positioned at the distal end of the arm 44 opposite the circular platform 42. The ball 46 may be integral with the arm 44 to facilitate formation of the arm 44 or the ball 46 may be removable from the arm 44, such as where a plurality of balls are provided to conform to various socket assemblies.


The ball 46 is preferably substantially rigid to prevent deformation thereof and presents an outer surface that introduces sufficient friction between the ball 46 and the socket assembly 40 to resist movement of the electronic device D relative to the base 38. The ball 46 may be constructed of plastic or another sturdy material that presents a rough surface, or may be coated to present a rough or soft surface with the friction characteristics described above.


The socket assembly 40 preferably removably couples with the base 38 by receiving and frictionally engaging at least a portion of the ball 46. In various embodiments the socket assembly 40 includes a seat 54 positioned at least partially within an orifice and operable to receive at least a portion of the ball 46.


Preferably, the seat 54 includes a plurality of interconnected arms 56. The arms 56 preferably substantially conform to the outer surface of the ball 46 to enable receipt of the ball 46, removably and rotatably couple the socket assembly 40 to the base 38, and frictionally resist rotation of the ball 46 relative to the seat 54.


In various embodiments, the housing 12 additionally includes a housing portion 58 formed between the front portion 30 and the rear portion 32. Thus, the volume between the front portion 30 and the rear portion 32 generally defines the housing portion 58. As shown in FIGS. 1 and 2, the housing portion 58 provides an area for housing and retaining the various mount 10 elements, including the antenna 14, processor 18, transmitter 16, etc. As should be appreciated, the housing portion 58 may be operable to house any element, including portions of the arm 44, posts 34, etc.


As shown in FIG. 4, various embodiments may lack the housing portion 58. Such a configuration enables the mount 10 to present a more compact profile. In order to achieve the compact profile, some embodiments of the present invention may lack the antenna 14, the processor 18, the transmitter 16, the memory 20, the microphone 22, the speaker 24, the coupling element 26, and/or the power source 28. For example, some embodiments of the mount 10 may include only the front portion 30, the rear portion 32, and the posts 34.


The posts 34 are positioned around at least a portion of the periphery of the front portion 30 to retain the electronic device. For example, the posts 34 may be positioned around three sides of the front portion 30, such as the left, right, and bottom, to enable the electronic device D to be securely retained therein.


Preferably, the posts 34 are spring-biased to further facilitate securely retaining the electronic device D. The posts 34 may be directly spring-biased through direct coupling with spring elements, such that insertion of the electronic device D between the posts 34 forces the posts 34 against the spring elements and generates a holding force to retain the electronic device D.


More preferably, the posts 34 are indirectly spring-biased through the utilization of a first slide 60, a second slide 62, and a spring element 64 coupled with both slides 60, 62 to bias the slides 60, 62 towards each other. At least one of the posts 34 is coupled with each slide 60, 62. The first slide 60 is positioned in proximity to a first side 66 of the front portion 30 and the second slide is positioned in proximity to a second side 68 of the front portion 30. Preferably, the slides 60, 62 are positioned in proximity to opposite sides of the front portion 30, such as a left and right side, but the slides 60, 62 may positioned in proximity to non-opposed sides of the front portion 30, such as a left side and a bottom side.


As shown in FIGS. 5-6, the slides 60, 62 are preferably positioned at least partially between the front portion 30 and the rear portion 32 for sliding therebetween. However, the slides 60, 62 may be positioned anywhere in proximity to the front portion 30, including in front of the front portion 30, behind the rear portion 32, entirely to the sides of the front portion 30, etc.


As shown in FIG. 3, the spring element 64 may include more than one spring or other resistive element coupled to each slide 60, 62. As the slides 60, 62 are pulled apart by the user, the spring element 64 biases the slides 60, 62 towards each other. To facilitate sliding and biasing of the slides 60, 62, the mount 10 may additionally include a cam 70 coupled to each slide. The cam 70 functions in a substantially conventional manner to enable symmetrical movement of the slides 60, 62. Thus, even if a force is applied to only one of the slides 60, 62, the cam 70 imparts an equal force to both slides 60, 62 to move the slides jointly. Such a configuration facilitates use of the mount 10 in automobiles and other mobile environments as the user may be unable the grasp the mount with two hands to pull each slide 60, 62 apart while driving.


In various embodiments, the front portion 30 includes one or more projections 72 extending therefrom and each slide 60, 62 may include one or more apertures 74 for receiving the projections 72. The projections 72 and apertures 74 limit the extent that the slides 60, 62 may be slid away from and towards each other, as shown in FIG. 3. For example, the area provided by the apertures 74 limits the amount the projections 72 may slide within each aperture, and thereby limits the amount the slides 60, 62, may slide in relation to the housing 12.


The posts 34 may be fixedly attached to various portions of the slides 60, 62, such as the periphery edges of the slides 60, 62, to provide appropriate contact with the electronic device D. Thus, one or more of the posts 34 may be integral with one of the slides 60, 62. However, the posts 34 are preferably repositionably coupled with the slides 60, 62 to enable the user to position the posts 34 on the slides 60, 62 in a desired manner. Thus, in various embodiments the posts 34 may be detachable from the slides 60, 62, slidable on the slides 60, 62, rotatable on the slides 60, 62, etc.


Utilizing repositonable posts 34 is preferable as it enables the mount 10 to conform to electronic devices having varying shapes, button configurations, and interfaces. For example, cellular phones often include important functional inputs on their sides, such that it would be disadvantageous if one of the posts 34 blocked, covered, or depressed the important functional inputs when the phone is retained by the mount 10. As cellular phones, and other electronic devices, present innumerable different configurations, it may be difficult or impossible to provide a static post configuration that interfaces appropriately with every conceivable electronic device configuration. Thus, by enabling the user to reposition and configure the posts 34, the user may position the posts 34 in any manner that securely retains the electronic device D without obstructing use of the electronic device D, regardless of the particular configuration of the electronic device D. For instance, the user may position the posts 34 around the electronic device's side buttons or displays to provide unobstructed access to the electronic device D.


As shown in FIGS. 10 and 11, each slide 60, 62 preferably includes a plurality of parallel grooves 76 arranged along at least one of its sides to repositionably interface with one or more of the posts 34. Specifically, each of the posts 34 may include a protrusion 78 operable to repositonably mate with one of the grooves 76. The posts 34 may be positioned on the slides 60, 62 by applying force to each post 34 to cause the protrusions 78 to enter and exit one or more of the grooves 76. Once the post 34 is in the appropriate position, and the user no longer applies force, the protrusion 78 is retained within the groove 76 to retain the post 34 at the desired position. The user may apply additional force to the posts 34 to easily reposition them.


Preferably, each of the posts 34 additionally includes an arcuate portion 80 operable to at least partially envelop a rail of one of the ends of the slides 60, 62 as shown in FIG. 1. The arcuate portion 80 facilitates the secure coupling of each of the posts 34 to the slides 60, 62 by restricting the movement of each of the posts 34 in two dimensions along the rail of the slides 60, 62. Specifically, the arcuate portion 80 prevents the posts 34 from rotating, pivoting, or inadvertently disengaging from the rails of the slides 60, 62 by generally limiting the movement of each post 34 to a direction parallel to the rails. Thus, the arcuate portion 80, in combination with the rails, protrusion 78 and grooves 76, ensures that the posts 34 are not accidentally or inadvertently detached or repositioned.


In addition to the arcuate portion 80 and protrusion 78, each of the posts 34 preferably includes a device engaging portion 82. The device engaging portion 82 is operable to directly contact the electronic device D to securely retain the electronic device D within the mount 10. The device engaging portion 82 may present any shape or profile, including cylindrical and rectangular shapes.


Preferably, the device engaging portion 82 includes an outer wall 84 and an inner wall 86 opposed to the outer wall 84. The inner wall 86 is operable to contact the electronic device D and the outer wall 84 generally defines one end of the mount 10. Preferably, the inner wall 86 is curved inwardly and away from the outer wall 84 at its distal end to facilitate coupling with the electronic device D, as shown in FIG. 12. Such curvature further facilitates secure mounting of the electronic device D as it generally prevents the electronic device D from disengaging from the mount 10 when the posts 34 are biased against the device D. Thus, the curvature of the device engaging portion 82 requires the slides 60, 62 to be slid apart from each other to remove the device D from the mount 10.


As shown in FIG. 13, in some embodiments the inner wall 86 may include an offset portion 88 substantially spaced away from other portions of the inner wall 86. Utilization of the offset portion 88 may be desirable in some embodiments as it enables the mount 10 to securely retain small electronic devices. Specifically, the offset portion 88 enables the posts 34 to retain the electronic device D even when the slides 60, 62 are not extended from each other, due to the extension of the offset portion 88 towards the center of the mount 10. However, as should be appreciated by those skilled in the art, the posts 34 may present any configuration operable to engage the electronic device D and need not be limited to the illustrations of FIGS. 12 and 13.


In operation, the user positions the mount 10 at a desired location, such as an automobile windshield, by utilizing the mounting element 36. For example, in embodiments where the mounting element 36 includes the base 38 and socket assembly 40, the user may attach the base 38 to the windshield and then attach the housing 12 to the base 38 by coupling the socket assembly 40 with the ball 46. After positioning the base 38 in the appropriate location, the user may provide power to the mount 10 by, for example, coupling the power source 28 with the automobile cigarette lighter socket. After, or before, mounting the mount 10 to the desired location, the electronic device D may be coupled with the mount 10, such as by utilizing the various secure fasteners discussed above.


Preferably, the user retains the electronic device D by positioning the device D between the posts 34. In embodiments where the posts 34 are coupled with the slides 60, 62, the user applies force to at least one of the slides 60, 62 to extend the slides 60, 62 apart from each other and increase the distance between the various posts 34 (as shown in FIG. 5), inserts the electronic device between the posts 34, and reduces the amount of force applied to the slides 60, 62, or stops applying force to slides 60, 62, to cause the slides 60, 62 to retract towards their initial position due to the force applied by the spring element 64 (as shown in FIG. 6). The posts 34 retract towards each other until they contact the electronic device D. The force provided by the spring element 64 causes at least some of the posts 34 to apply a constant holding force to the electronic device D to securely retain the device D.


To provide navigation information to the electronic device D, the mount 10 may continuously transmit navigation information utilizing the transmitter 16. Thus, for example, any electronic device in range of the mount 10 may receive navigation information therefrom, and not just the particular device securely retained by the mount 10. However, in some embodiments the mount 10 may only transmit navigation information when instructed to by the user, such as by the user depressing a functionable input positioned on the housing 12 or electronic device D, only when the electronic device D is retained by the mount 10, when instructed by a signal received through the transmitter 16, etc. As discussed above, the user may provide audio information to the electronic device D by functioning an input on the mount 10 or the electronic device D, or automatically by speaking in proximity to the mount 10 in a similar manner to conventional hands-free communication devices. Utilizing the transmitter 16, the mount 10 may simultaneously transmit both navigation information and audio information to the device D.


Although the invention has been described with reference to the preferred embodiment illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims. For instance, the mount 10 of the present invention may retain any device to wirelessly provide information thereto, and need not be limited to providing navigation information to navigation devices.

Claims
  • 1. A mount operable to removably couple an electronic device to a surface, the mount comprising: an antenna operable to receive a navigation signal;a processor coupled with the antenna and operable to generate navigation information utilizing the received navigation signal;a transmitter coupled with the processor and operable to wirelessly transmit the generated navigation information to the electronic device; anda housing to house at least a portion of the processor and the transmitter, the housing operable to securely retain the electronic device and couple with the surface, wherein the generated navigation information is selected from the group consisting of a current geographic location of the mount, a previous geographic location of the mount, a speed of the mount, a distance traveled by the mount, a route, a map corresponding to a determined geographic location, and combinations thereof.
  • 2. The mount of claim 1, wherein the received navigation signal corresponds to a Global Positioning System (GPS) signal.
  • 3. The mount of claim 1, wherein the transmitter is operable to wirelessly transmit the generated navigation information to the electronic device utilizing a Bluetooth protocol.
  • 4. The mount of claim 1, further including a microphone and a speaker each coupled with the processor.
  • 5. The mount of claim 4, wherein the transmitter is operable to wirelessly transmit audio information corresponding to sound received by the microphone to the electronic device.
  • 6. The mount of claim 4, wherein the transmitter is operable to wirelessly receive audio information from the electronic device and the speaker is operable to generate sound corresponding to the received audio information.
  • 7. The mount of claim 1, wherein the electronic device is selected from the group consisting of a cellular phone, a personal digital assistant (PDA), and a portable entertainment device.
  • 8. The mount of claim 1, wherein the mount further includes- a coupling element operable to electrically couple the mount and the electronic device, anda power source operable to provide electrical power to the electronic device through the coupling element.
  • 9. The mount of claim 1, wherein the transmitter is operable for bi-directional communication with the electronic device.
  • 10. A mount operable to removably couple an electronic device to a surface, the mount comprising: an antenna operable to receive a navigation signal;a processor coupled with the antenna and operable to generate navigation information utilizing the received navigation signal;a transmitter coupled with the processor and operable to wirelessly transmit the generated navigation information to the electronic device; anda housing to house at least portions of the processor and the transmitter, the housing including:a front portion,a rear portion generally opposed to the front portion, the rear portion including a mounting element operable to couple with the surface, anda plurality of spring-biased posts positioned around a least a portion of the periphery of the front portion and operable to securely retain the electronic device, wherein the generated navigation information is selected from the group consisting of a current geographic location of the mount, a previous geographic location of the mount, a speed of the mount, a distance traveled by the mount, a route from the mount to a desired geographic location, a map corresponding to a determined geographic location, and combinations thereof.
  • 11. The mount of claim 10, wherein the mounting element includes a socket assembly to enable the mount to be rotatably coupled with the surface.
  • 12. The mount of claim 10, wherein the received navigation signal corresponds to a Global Positioning System (GPS) signal.
  • 13. The mount of claim 10, wherein the transmitter is operable to wirelessly transmit the generated navigation information to the electronic device utilizing the Bluetooth protocol.
  • 14. The mount of claim 10, further including a microphone and a speaker each coupled with the processor.
  • 15. The mount of claim 14, wherein the transmitter is operable to wirelessly transmit audio information corresponding to sound received by the microphone to the electronic device.
  • 16. The mount of claim 14, wherein the transmitter is operable to wirelessly receive audio information from the electronic device and the speaker is operable to generate sound corresponding to the received audio information.
  • 17. The mount of claim 14, wherein the mount further includes coupling element operable to electrically couple the mount and the electronic device, anda power source operable to provide electrical power to the electronic device through the coupling element.
  • 18. A mount operable to removably couple an electronic device to a surface, the mount comprising: an antenna operable to receive a Global Positioning System (GPS) signal;a processor coupled with the antenna and operable to generate navigation information utilizing the received signal, wherein the generated navigation information is selected from the group consisting of a current geographic location of the mount and a speed of the mount;a Bluetooth transmitter coupled with the processor and operable to wirelessly transmit the generated navigation information to the electronic device, wherein the transmitter is further operable to transmit and receive audio information to and from the electronic device; anda housing to house at least portions of the processor and the transmitter, the housing Including-a microphone and a speaker each coupled with the processor to receive and produce the audio information,a front portion,a rear portion generally opposed to the front portion, the rear portion including a mounting element to enable the mount to be coupled with the surface, anda plurality of spring-biased posts positioned around a least a portion of the periphery of the front portion and operable to securely retain the electronic device.
US Referenced Citations (461)
Number Name Date Kind
1398483 Curtis Nov 1921 A
2508076 Palmer May 1950 A
2792932 Friestat May 1957 A
2958760 McNally Nov 1960 A
3040900 Jones Jun 1962 A
3063048 Lehan et al. Nov 1962 A
3509882 Blake May 1970 A
3660812 Inose et al. May 1972 A
3883847 Frank May 1975 A
4021807 Culpepper et al. May 1977 A
4131849 Freeburg et al. Dec 1978 A
4296408 Neuringer Oct 1981 A
4323992 Tobin, Jr. Apr 1982 A
4445118 Taylor et al. Apr 1984 A
4459667 Takeuchi Jul 1984 A
4475010 Huensch et al. Oct 1984 A
4536926 Pantaleo Aug 1985 A
4583269 Harris Apr 1986 A
4593273 Narcisse Jun 1986 A
4625526 Milawski Dec 1986 A
4642775 Cline et al. Feb 1987 A
4651157 Gray et al. Mar 1987 A
4675656 Narcisse Jun 1987 A
D291288 Suzuki Aug 1987 S
4750197 Denekamp et al. Jun 1988 A
4809005 Counselman, III Feb 1989 A
4811613 Phillips et al. Mar 1989 A
4827419 Selby May 1989 A
4831563 Ando et al. May 1989 A
D301882 Watanabe Jun 1989 S
D302271 Watanabe Jul 1989 S
4884132 Morris et al. Nov 1989 A
4891650 Sheffer Jan 1990 A
4907290 Crompton Mar 1990 A
4912756 Hop Mar 1990 A
4924402 Ando et al. May 1990 A
4926336 Yamada May 1990 A
4937753 Yamada Jun 1990 A
4953198 Daly et al. Aug 1990 A
4957510 Cremascoli Sep 1990 A
4972479 Tobias, Jr. et al. Nov 1990 A
D312650 Charrier Dec 1990 S
4977399 Price et al. Dec 1990 A
D314713 Ciranny et al. Feb 1991 S
5021794 Lawrence Jun 1991 A
5043736 Darnell et al. Aug 1991 A
5055851 Sheffer Oct 1991 A
5072209 Hori et al. Dec 1991 A
D326450 Watanabe May 1992 S
5119504 Durboraw, III Jun 1992 A
5144323 Yonkers Sep 1992 A
5146231 Ghaem et al. Sep 1992 A
5155689 Wortham Oct 1992 A
5172110 Tiefengraber Dec 1992 A
5187744 Richter Feb 1993 A
5193215 Oimers Mar 1993 A
5202829 Geier Apr 1993 A
5208593 Tong et al. May 1993 A
5208756 Song May 1993 A
5218367 Sheffer et al. Jun 1993 A
5219067 Lima et al. Jun 1993 A
5220507 Kirson Jun 1993 A
5220509 Takemura et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
D337582 Lewo Jul 1993 S
5235633 Dennison et al. Aug 1993 A
5243529 Kashiwazaki Sep 1993 A
5245314 Kah, Jr. Sep 1993 A
5258592 Nishikawa et al. Nov 1993 A
5265150 Helmkamp et al. Nov 1993 A
5265929 Pelham Nov 1993 A
5272638 Martin et al. Dec 1993 A
5289195 Inoue Feb 1994 A
5297051 Arakawa et al. Mar 1994 A
5299132 Wortham Mar 1994 A
5301368 Hirata Apr 1994 A
5305381 Wang et al. Apr 1994 A
5307277 Hirano Apr 1994 A
5315636 Patel May 1994 A
5323164 Endo Jun 1994 A
5327144 Stilp et al. Jul 1994 A
5331563 Masumoto et al. Jul 1994 A
5334799 Naito et al. Aug 1994 A
5334974 Simms et al. Aug 1994 A
5341410 Aron et al. Aug 1994 A
5343399 Yokoyama et al. Aug 1994 A
5345244 Gildea et al. Sep 1994 A
5349530 Odagawa Sep 1994 A
D351169 Leung Oct 1994 S
5355511 Hatano et al. Oct 1994 A
5361212 Class et al. Nov 1994 A
5363306 Kuwahara et al. Nov 1994 A
5364093 Huston et al. Nov 1994 A
5365448 Nobe et al. Nov 1994 A
5365450 Schuchman et al. Nov 1994 A
5371497 Nimura et al. Dec 1994 A
5379224 Brown et al. Jan 1995 A
5389934 Kass Feb 1995 A
5396430 Arakawa et al. Mar 1995 A
5408238 Smith Apr 1995 A
5410486 Kishi Apr 1995 A
5414432 Penny et al. May 1995 A
5422815 Hijikata Jun 1995 A
5422816 Sprague et al. Jun 1995 A
5424953 Masumoto et al. Jun 1995 A
5434789 Fraker et al. Jul 1995 A
5438518 Bianco et al. Aug 1995 A
5442559 Kuwahara et al. Aug 1995 A
5448773 McBurney et al. Sep 1995 A
5452212 Yokoyama et al. Sep 1995 A
5452217 Kishi Sep 1995 A
D363488 Shumaker Oct 1995 S
5463554 Araki et al. Oct 1995 A
D364164 Hanig Nov 1995 S
5469175 Boman Nov 1995 A
D365032 Laverick et al. Dec 1995 S
D365292 Laverick et al. Dec 1995 S
5475599 Yokoyama Dec 1995 A
5493309 Bjornholt Feb 1996 A
5506578 Kishi Apr 1996 A
5506587 Lans Apr 1996 A
5506774 Nobe et al. Apr 1996 A
5509369 Ford et al. Apr 1996 A
5513183 Kay et al. Apr 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley et al. May 1996 A
5526526 Clark et al. Jun 1996 A
5528248 Steiner et al. Jun 1996 A
5537323 Schulte Jul 1996 A
5537324 Nimura et al. Jul 1996 A
5539398 Hall et al. Jul 1996 A
5546107 Deretsky et al. Aug 1996 A
5555286 Tendler Sep 1996 A
5557606 Moon et al. Sep 1996 A
5559511 Ito et al. Sep 1996 A
5570095 Drouilhet et al. Oct 1996 A
5581259 Schipper Dec 1996 A
5592382 Colley Jan 1997 A
5615258 Ho Mar 1997 A
5632217 Ford et al. May 1997 A
5638279 Kishi et al. Jun 1997 A
5650770 Schlager et al. Jul 1997 A
5652706 Morimoto et al. Jul 1997 A
5654718 Beason et al. Aug 1997 A
5657231 Nobe et al. Aug 1997 A
5685732 Lane Nov 1997 A
5689269 Norris Nov 1997 A
5689809 Grube et al. Nov 1997 A
5712788 Liaw et al. Jan 1998 A
5712899 Pace, II Jan 1998 A
5729109 Kaneko et al. Mar 1998 A
5729458 Poppen Mar 1998 A
5739772 Nanba et al. Apr 1998 A
5742666 Alpert Apr 1998 A
5742925 Baba Apr 1998 A
5757289 Nimura et al. May 1998 A
5774073 Maekawa et al. Jun 1998 A
5781150 Norris Jul 1998 A
5786789 Janky Jul 1998 A
5787383 Moroto et al. Jul 1998 A
5793631 Ito Aug 1998 A
5797091 Clise et al. Aug 1998 A
5804810 Woolley et al. Sep 1998 A
5809447 Kato Sep 1998 A
5814765 Bauer et al. Sep 1998 A
5821887 Zhu Oct 1998 A
5826195 Westerlage et al. Oct 1998 A
5845282 Alley et al. Dec 1998 A
5848373 DeLorme et al. Dec 1998 A
5852791 Sato et al. Dec 1998 A
5857196 Angle et al. Jan 1999 A
5862511 Croyle et al. Jan 1999 A
5874905 Nanba et al. Feb 1999 A
5877724 Davis Mar 1999 A
5877751 Kanemitsu et al. Mar 1999 A
5878368 DeGraaf Mar 1999 A
5890070 Hamada Mar 1999 A
5890092 Kato et al. Mar 1999 A
5892441 Woolley et al. Apr 1999 A
5893081 Poppen Apr 1999 A
5899907 Johnson May 1999 A
5902347 Backman et al. May 1999 A
5902349 Endo et al. May 1999 A
5910172 Peneberg Jun 1999 A
5911773 Mutsuga et al. Jun 1999 A
5914675 Tognazzini Jun 1999 A
5917405 Joao Jun 1999 A
5925090 Poonsaengsathit Jul 1999 A
5926118 Hayashida et al. Jul 1999 A
5929752 Janky et al. Jul 1999 A
5938721 Dussell et al. Aug 1999 A
5946687 Gehani et al. Aug 1999 A
5946692 Faloutsos et al. Aug 1999 A
5951622 Nomura Sep 1999 A
5952959 Norris Sep 1999 A
5953722 Lampert et al. Sep 1999 A
5959529 Kail Sep 1999 A
5963130 Schlager et al. Oct 1999 A
5977885 Watanabe Nov 1999 A
5978730 Poppen et al. Nov 1999 A
5982885 Ho Nov 1999 A
5992809 Sweere et al. Nov 1999 A
5995000 King Nov 1999 A
5995970 Robinson et al. Nov 1999 A
6002982 Fry Dec 1999 A
6005513 Hardesty Dec 1999 A
6009375 Sakumoto et al. Dec 1999 A
6011510 Yee et al. Jan 2000 A
6013080 Khalili Jan 2000 A
6021406 Kuznetsov Feb 2000 A
6023655 Nomura Feb 2000 A
6028537 Suman et al. Feb 2000 A
6035299 White et al. Mar 2000 A
6038509 Poppen et al. Mar 2000 A
6038559 Ashby et al. Mar 2000 A
6040824 Maekawa et al. Mar 2000 A
6046688 Higashikata et al. Apr 2000 A
6047280 Ashby et al. Apr 2000 A
6052597 Ekstrom Apr 2000 A
6052645 Harada Apr 2000 A
6061003 Harada May 2000 A
6061630 Walgers et al. May 2000 A
6064336 Krasner May 2000 A
6064922 Lee May 2000 A
6069588 O'Neill, Jr. May 2000 A
D426225 Davis Jun 2000 S
D426226 Ridinger Jun 2000 S
D427177 Yamazaki Jun 2000 S
6073076 Crowley et al. Jun 2000 A
6081803 Ashby et al. Jun 2000 A
6085090 Yee et al. Jul 2000 A
6088652 Abe Jul 2000 A
6101443 Kato et al. Aug 2000 A
6108603 Karunanidhi Aug 2000 A
6111539 Mannings et al. Aug 2000 A
6112153 Schaaf et al. Aug 2000 A
6112200 Livshutz et al. Aug 2000 A
6119066 Sugiura et al. Sep 2000 A
6121314 Richter et al. Sep 2000 A
6121900 Takishita Sep 2000 A
6122593 Friederich et al. Sep 2000 A
6124826 Garthwaite et al. Sep 2000 A
6126659 Wack Oct 2000 A
6128515 Kabler et al. Oct 2000 A
6128573 Nomura Oct 2000 A
6129321 Minelli et al. Oct 2000 A
6134501 Oumi Oct 2000 A
6144336 Preston et al. Nov 2000 A
6148261 Obradovich et al. Nov 2000 A
6148262 Fry Nov 2000 A
6151552 Koizumi et al. Nov 2000 A
6161092 Latshaw Dec 2000 A
6166626 Janky et al. Dec 2000 A
6166698 Turnbull et al. Dec 2000 A
6169956 Morimoto et al. Jan 2001 B1
6172641 Millington Jan 2001 B1
6173933 Whiteside et al. Jan 2001 B1
6182006 Meek Jan 2001 B1
6182010 Berstis Jan 2001 B1
6184823 Smith et al. Feb 2001 B1
6192314 Khavakh et al. Feb 2001 B1
6193759 Ro et al. Feb 2001 B1
6199013 O'Shea Mar 2001 B1
6199045 Giniger et al. Mar 2001 B1
6202024 Yokoyama et al. Mar 2001 B1
6202026 Nimura et al. Mar 2001 B1
6219457 Potu Apr 2001 B1
6236338 Hamada May 2001 B1
6236358 Durst et al. May 2001 B1
6240276 Camp, Jr. May 2001 B1
6246376 Bork et al. Jun 2001 B1
6249740 Ito et al. Jun 2001 B1
6249744 Morita Jun 2001 B1
6255800 Bork Jul 2001 B1
6256351 Hong Jul 2001 B1
6259988 Galkowski et al. Jul 2001 B1
6263276 Yokoyama et al. Jul 2001 B1
6263277 Tanimoto et al. Jul 2001 B1
6266612 Dussell et al. Jul 2001 B1
6266615 Jin Jul 2001 B1
6270502 Stulberg Aug 2001 B1
6275707 Reed et al. Aug 2001 B1
6278402 Pippin Aug 2001 B1
6278994 Fuh et al. Aug 2001 B1
6285950 Tanimoto Sep 2001 B1
6285951 Gaskins et al. Sep 2001 B1
6292743 Pu et al. Sep 2001 B1
6295449 Westerlage et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6298303 Khavakh et al. Oct 2001 B1
6298305 Kadaba et al. Oct 2001 B1
6307573 Barros Oct 2001 B1
6308177 Israni et al. Oct 2001 B1
6309395 Smith Oct 2001 B1
6314365 Smith Nov 2001 B1
6317684 Roeseler et al. Nov 2001 B1
6317687 Morimoto et al. Nov 2001 B1
6321158 DeLorme et al. Nov 2001 B1
6324467 Machii et al. Nov 2001 B1
6339706 Tillgren et al. Jan 2002 B1
D453752 Lee Feb 2002 S
6345179 Wiegers et al. Feb 2002 B1
6347278 Ito Feb 2002 B2
6349257 Liu et al. Feb 2002 B1
6366672 Tsay Apr 2002 B1
6366771 Angle et al. Apr 2002 B1
6370741 Lu Apr 2002 B1
6373430 Beason et al. Apr 2002 B1
6374079 Hsu Apr 2002 B1
6374177 Lee et al. Apr 2002 B1
6374179 Smith et al. Apr 2002 B1
6381535 Durocher et al. Apr 2002 B1
D457873 Ng May 2002 S
6388877 Canova, Jr. et al. May 2002 B1
6389291 Pande et al. May 2002 B1
6393149 Friederich et al. May 2002 B2
6401034 Kaplan et al. Jun 2002 B1
6401035 Jin Jun 2002 B2
6405123 Rennard et al. Jun 2002 B1
6411899 Dussell et al. Jun 2002 B2
6414629 Curcio Jul 2002 B1
6421608 Motoyama et al. Jul 2002 B1
6427119 Stefan et al. Jul 2002 B1
6427122 Lin Jul 2002 B1
6427959 Kalis et al. Aug 2002 B1
6430498 Maruyama et al. Aug 2002 B1
6434478 Ikeda Aug 2002 B1
6434485 Beason et al. Aug 2002 B1
6453236 Aoki Sep 2002 B1
6456234 Johnson Sep 2002 B1
6456938 Barnard Sep 2002 B1
6460046 Meek Oct 2002 B1
6464185 Whiteside et al. Oct 2002 B1
6470267 Nozaki Oct 2002 B1
6477526 Hayashi et al. Nov 2002 B2
6484093 Ito et al. Nov 2002 B1
6492941 Beason et al. Dec 2002 B1
6496709 Murray Dec 2002 B2
6496777 Tennison et al. Dec 2002 B2
6504496 Mesarovic et al. Jan 2003 B1
6504503 Saint-Hilaire et al. Jan 2003 B1
6505123 Root et al. Jan 2003 B1
6509869 Aoyama Jan 2003 B2
6510379 Hasegawa et al. Jan 2003 B1
6512525 Capps et al. Jan 2003 B1
6518919 Durst et al. Feb 2003 B1
6522875 Dowling et al. Feb 2003 B1
6526351 Whitham Feb 2003 B2
6529824 Obradovich et al. Mar 2003 B1
6532152 White et al. Mar 2003 B1
6535743 Kennedy et al. Mar 2003 B1
6542814 Polidi et al. Apr 2003 B2
6545637 Krull et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6563440 Kangas May 2003 B1
6563459 Takenaga May 2003 B2
6567743 Mueller et al. May 2003 B1
6574553 Beesley et al. Jun 2003 B1
6574554 Beesley et al. Jun 2003 B1
6581003 Childs et al. Jun 2003 B1
6581025 Lehman Jun 2003 B2
6589285 Peneberg Jul 2003 B2
6594666 Biswas et al. Jul 2003 B1
6615130 Myr Sep 2003 B2
6615131 Rennard et al. Sep 2003 B1
6633809 Aizono et al. Oct 2003 B1
6636749 Holmes et al. Oct 2003 B2
6646603 Dooley et al. Nov 2003 B2
6646864 Richardson Nov 2003 B2
6650996 Beesley et al. Nov 2003 B1
6656188 Naybour et al. Dec 2003 B2
6657569 Barnett Dec 2003 B2
6674849 Froeberg Jan 2004 B1
6675093 Childs et al. Jan 2004 B1
6680694 Knockeart et al. Jan 2004 B1
6687615 Krull et al. Feb 2004 B1
6693586 Walters et al. Feb 2004 B1
6694256 Childs et al. Feb 2004 B1
6701252 Brown Mar 2004 B2
6704645 Beesley et al. Mar 2004 B1
6707421 Drury et al. Mar 2004 B1
6708112 Beesley et al. Mar 2004 B1
6711005 Martin Mar 2004 B2
6725155 Takahashi et al. Apr 2004 B1
6728632 Medl Apr 2004 B2
6742052 Himmel et al. May 2004 B2
6754583 Verbil Jun 2004 B2
6765528 Tranchina et al. Jul 2004 B2
6768450 Walters et al. Jul 2004 B1
6768942 Chojnacki Jul 2004 B1
6771163 Linnett Aug 2004 B2
6774795 Eshelman Aug 2004 B2
6775612 Kao et al. Aug 2004 B1
6782318 Beesley et al. Aug 2004 B1
6789012 Childs et al. Sep 2004 B1
6791477 Sari et al. Sep 2004 B2
6798358 Joyce Sep 2004 B2
6799115 Childs et al. Sep 2004 B1
6807483 Chao et al. Oct 2004 B1
6807484 Inoue et al. Oct 2004 B2
6812888 Drury Nov 2004 B2
6816782 Walters et al. Nov 2004 B1
6823256 Burt Nov 2004 B1
6834230 Childs et al. Dec 2004 B1
6839624 Beesley et al. Jan 2005 B1
6845322 Chao et al. Jan 2005 B1
6847889 Park Jan 2005 B2
6847890 Childs et al. Jan 2005 B1
6850188 Lee Feb 2005 B1
6850842 Park Feb 2005 B2
6856893 Beesley et al. Feb 2005 B2
6856899 Krull et al. Feb 2005 B2
6856900 Childs et al. Feb 2005 B1
6871144 Lee Mar 2005 B1
6873850 Dowling Mar 2005 B2
6889138 Krull et al. May 2005 B1
6892135 Krull et al. May 2005 B1
6898520 Kao et al. May 2005 B2
6898526 Doyle et al. May 2005 B2
6920328 Wollrab Jul 2005 B2
6928468 Leemakers Aug 2005 B2
6941156 Mooney Sep 2005 B2
6944651 Onyon Sep 2005 B2
6948043 Mathis Sep 2005 B2
6970130 Walters et al. Nov 2005 B1
6972715 Hollis Dec 2005 B2
6975940 Childs et al. Dec 2005 B1
6980906 Kao et al. Dec 2005 B2
6985753 Rodriguez Jan 2006 B2
6999873 Krull et al. Feb 2006 B1
7006851 Holmes et al. Feb 2006 B2
7006903 Smith Feb 2006 B2
20010045949 Chithambaram et al. Nov 2001 A1
20020004704 Nagatsuma et al. Jan 2002 A1
20020006806 Kinnunen et al. Jan 2002 A1
20020028702 Kim Mar 2002 A1
20020070881 Marcarelli et al. Jun 2002 A1
20020091527 Shiau Jul 2002 A1
20020102988 Myllymaki Aug 2002 A1
20020102989 Calvert et al. Aug 2002 A1
20020120753 Levanon et al. Aug 2002 A1
20020128774 Takezaki et al. Sep 2002 A1
20020164998 Younis Nov 2002 A1
20020173905 Jin Nov 2002 A1
20020193945 Tan et al. Dec 2002 A1
20030013483 Ausems et al. Jan 2003 A1
20030069899 Brown et al. Apr 2003 A1
20030092433 Flannery May 2003 A1
20030107516 Hansmann et al. Jun 2003 A1
20030131023 Bassett et al. Jul 2003 A1
20030131059 Brown et al. Jul 2003 A1
20040003051 Krzyzanowski Jan 2004 A1
20040015239 LeBeguec Jan 2004 A1
20040024471 Ferree Feb 2004 A1
20040153239 Krull et al. Aug 2004 A1
20040155815 Muncaster et al. Aug 2004 A1
20040220726 Jin Nov 2004 A1
20050162513 Chan Jul 2005 A1
20050215194 Boling et al. Sep 2005 A1
20050287958 Jui Sheng et al. Dec 2005 A1
20060002123 Hutzel et al. Jan 2006 A1
Foreign Referenced Citations (20)
Number Date Country
209809 Dec 2002 AT
1391687 Oct 2003 CN
004320976 Jan 1995 DE
0061674 Jun 1982 EP
0123562 Apr 1984 EP
0242099 Oct 1987 EP
0588370 Mar 1994 EP
0752450 Jan 1997 EP
2541801 Feb 1983 FR
2818414 Jun 2002 FR
2412254 Sep 2005 GB
08-221694 Aug 1996 JP
10-132594 May 1998 JP
10319396 Dec 1998 JP
0123839 Apr 2001 WO
0161276 Aug 2001 WO
02060157 Aug 2002 WO
02103291 Dec 2002 WO
03058170 Jul 2003 WO
2005090919 Sep 2005 WO
Related Publications (1)
Number Date Country
20070207842 A1 Sep 2007 US