The disclosure relates to mounting arrangements in general and mounting arrangements for electronic devices in particular.
Handheld and/or portable electronic devices (e.g., smartphones, tablet computers, handheld readers, portable speakers and similar devices) are becoming important and common tools. These tools are constantly in use, both at home and on the go.
However, with this frequency and variety of use comes the need or desirability for mounting the electronic device relative to another object. While certain mounting arrangements exist, there remains a need for improved arrangements that permit easier and/or more secure mounting, or at least provide the public with a useful choice.
In some embodiments, an electronic device mount is disclosed. The electronic device mount comprises a mount assembly comprising a mount piece, an interlocking member and a second portion of the mount assembly.
An aspect of a disclosed embodiment involves an electronic device mount system having a case configured to be selectively connectable to the electronic device and retain the electronic device within an interior space of the case. The case includes a rear portion that is positioned along a rear surface of the electronic device and a side portion extending from the rear portion and being positioned adjacent at least a portion of a top, bottom, left and right sides of the electronic device. The rear portion of the case includes an attachment region defining an opening having a periphery. The periphery of the opening defines a plurality of case tabs. Each of the plurality of case tabs are separated by one of a plurality of access spaces. Each of the plurality of case tabs defines one of a plurality of cavities. A mount assembly comprises an interlocking member. The interlocking member includes at least one mount interlock portion comprising a plurality of engagement tabs. The mount assembly also includes a pressure plate and a biasing member. In use, the plurality of engagement tabs of the interlocking member are passed through a respective one of the access spaces of the attachment region and into a respective one of the plurality of cavities of the plurality of case tabs. The force of the biasing member applied to the pressure plate creates a retention force inhibiting unintentional rotation of the case relative to the mount assembly.
In some configurations, the biasing member is a wave spring.
In some configurations, the mount assembly is or is incorporated within a bike mount that, in use, is mounted to a component of a bicycle.
In some configurations, the bike mount comprises a cap portion that, in use, is secured to a steerer tube of the bicycle.
In some configurations, the bike mount further comprising an arm portion that extends between the cap portion and the interlocking member, wherein the arm portion is rotatably adjustable relative to the cap portion.
An aspect of a disclosed embodiment involves an electronic device mount system including a mount portion and a mountable portion. The mount portion includes an interlock portion having a plurality of interlock tabs. The mount portion also includes a pressure plate and a biasing member configured to apply a biasing force tending to move the pressure plate toward the interlock portion. The mountable portion includes an attachment region having an opening. A periphery of the opening defines a plurality of attachment tabs. Each of the plurality of attachment tabs are separated by one of a plurality of access spaces. The attachment region further comprises a plurality of cavities. Each of the plurality of cavities is associated with one of the plurality of attachment tabs. In use, each of the interlock tabs of the interlock portion are passed through a respective one of the plurality of access spaces of the attachment region and pressed against the pressure plate to move the pressure plate away from the interlock portion. The mount portion is rotated to align the plurality of interlock tabs with the plurality of cavities and moved axially to locate the plurality of interlock tabs within the plurality of cavities. The pressure plate secures the interlock tabs within the plurality of cavities utilizing the biasing force of the biasing member to create a retention force inhibiting unintentional rotation of the mountable portion relative to the mount portion.
In some configurations, the biasing member is a wave spring.
In some configurations, the mountable portion comprises an adhesive layer that permits the mountable portion to be secured to a surface via adhesion.
In some configurations, the mount portion is or is incorporated within a bike mount that, in use, is mounted to a component of a bicycle.
In some configurations, the bike mount comprises a cap portion that, in use, is secured to a steerer tube of the bicycle.
In some configurations, the bike mount further comprises an arm portion that extends between the cap portion and the mount portion, wherein the arm portion is rotatably adjustable relative to the cap portion.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings.
Embodiments of systems, components and methods of assembly and manufacture will now be described with reference to the accompanying figures, wherein like numerals refer to like or similar elements throughout. Although several embodiments, examples and illustrations are disclosed below, it will be understood by those of ordinary skill in the art that the inventions described herein extends beyond the specifically disclosed embodiments, examples and illustrations, and can include other uses of the inventions and obvious modifications and equivalents thereof. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being used in conjunction with a detailed description of certain specific embodiments of the inventions. In addition, embodiments of the inventions can comprise several novel features and no single feature is solely responsible for its desirable attributes or is essential to practicing the inventions herein described.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “above” and “below” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “left,” “right,” “rear,” and “side” describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Moreover, terms such as “first,” “second,” “third,” and so on may be used to describe separate components. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
In at least some embodiments disclosed herein, the mounting arrangements can be implemented in the context of a protection system or case for a portable or handheld electronic device (hereinafter “handheld electronic device”). Some embodiments include a case that incorporates an attachment region for attaching a removable mount assembly configured to support the handheld electronic device within the case. The removable mount assembly can be configured to be affixed to a variety of surfaces. Some embodiments may also incorporate an optional anti-slip member comprising an anti-slip surface for slip prevention when the case and handheld electronic device are supported upon a surface. In some configurations, the case can include a magnet for attachment of the device to magnetic surfaces. The magnet can be housed within the anti-slip member or separately therefrom.
Although discussed in the context of a case for an electronic device, the mounting arrangement can also be used to removably couple other objects to a mount assembly. For example, in some configurations, a universal mounting puck can be provided with an attachment region and configured to adhesively or otherwise attach to an object to be mounted. Therefore, references to the case herein can equally refer to a universal mounting puck or any other object to be mounted that includes a suitable attachment region.
With reference to
The illustrated bike mount 1100 may be mounted on or as a replacement of the top cap of a bicycle steering stem arrangement, preferably using bolt 1120. In particular, the bike mount 1100 preferably includes a cap (not shown) that replaces the top cap of a standard bicycle steering headset system and rests on the upper surface of the handlebar stem or stem spacer. As is known, the top cap is utilized to adjust a preload of the bearings in the bicycle steering headset system. The present bike mount 1100 can replace the standard top cap. In the illustrated arrangement, the bike mount 1100 includes an arm portion 1115 that extends from the cap. The arm portion 1115 is rotatably coupled to the cap by a pivot assembly comprising a pivot barrel 1120 to provide for adjustment of an angle of the arm portion 1115. Additional details of the bike mount 1100 are disclosed in the aforementioned '774 patent.
As shown in
The illustrated mount assembly 100 includes a retention arrangement 120 configured to retain the case on the interlocking member 104 and inhibit or prevent unintentional separation of the case from the mount assembly 100. In some configurations, the retention arrangement 120 is configured to permit convenient intentional removal of the case from the mount assembly 100. In some embodiments, the retention arrangement 120 is configured to allow single-handed removal of the case from the mount assembly 100. In other words, there is no lock actuator (e.g., a lever) that needs to be actuated with one hand of the user while the other hand of the user rotates the case relative to the mount assembly 100.
In the illustrated arrangement, the retention arrangement 120 comprises a retention body in the form of an annular pressure plate 122. The pressure plate 122 is biased toward the interlocking member 104 by a biasing member 124, which can be or comprise one or more springs. In the illustrated arrangement, the biasing member 124 is a wave spring, such as those sold under the tradename SMALLEY by the Smalley Steel Ring Company. However, other types of springs or other biasing members could also be used.
As illustrated, the attachment region 202 comprises at least one tab 210. In the illustrated arrangement, the attachment region 202 includes four tabs 210; however, other numbers of tabs 210 could also be provided, such as two, three, five, six or more tabs 210. The opening 204 preferably also includes at least one access space 212 located beside or circumferentially offset from the at least one tab 210. Preferably, the number of access spaces 212 corresponds to the number of tabs 210. In the illustrated arrangement, four access spaces 212 are provided; however, the number of access spaces 212 can vary in the same manner as the number of tabs 210. Each of the tabs 112 of the interlocking member 104 can be inserted through one of the access spaces 212 to allow for connection of the mount assembly 100 and the second portion 200.
With reference to
In use, the second portion 200 can be manipulated to pass the interlocking member 104 through the opening 204. The second portion 200 can be pushed toward the base 102 of the mount assembly 100 against the biasing force of the biasing member 124. The second portion 200 is pushed until the pressure plate 122 is moved toward the base a sufficient distance that the tabs 112 of the interlocking member 104 clear the walls 220. The second portion 200 can then be turned to align the cavities 222 with the tabs 112 of the interlocking member 104. The second portion 200 can then be released in the axial direction such that the pressure plate 122 moves the second portion 200 in the axial direction, or the second portion 200 can be moved in the axial direction, to position the tabs 112 of the interlocking member 104 within the cavities 222 of the second portion 200. The force of the biasing member 124 acting on the pressure plate 122 creates a retention force that inhibits or prevents unintentional rotation of the second portion 200 relative to the interlocking member 104 (and, thus, separation of the second portion 200 from the mount assembly 100). To remove the second portion 200 from the mount assembly 100, the user pushes down on the second portion 200 (toward the base 102) with sufficient force to overcome the biasing force of the biasing member 124 so that the tabs 112 are disengaged from the cavities 222. The second portion 200 can then be rotated to align the tabs 112 with the access spaces 212, which permits the interlocking member 104 to pass through the opening 204 of the second portion 200. Advantageously, the assembly of the second portion 200 to the mount assembly 100 and the removal of the second portion 200 from the mount assembly 100 can be accomplished by the user using a single hand. As a result, the mounting arrangement is well-suited for use in active environments, such as cycling or motorcycling, for example. The single-handed attachment and removal process is more convenient in other environments, as well.
In the arrangement of
As shown in
Upper shell piece 602 preferably includes an attachment region 606 for attaching interlocking member 104. In the illustrated arrangement, the attachment region 60 is identical to the second portion 200 of
As illustrated in
The opening 204 preferably also includes at least one access space 212 located beside or circumferentially offset from the at least one tab 210. Preferably, the number of access spaces 212 corresponds to the number of tabs 210. In the illustrated arrangement, four access spaces 212 are provided; however, the number of access spaces 212 can vary in the same manner as the number of tabs 210. Each of the tabs 210 of the interlocking member 104 can be inserted through one of the access spaces 212 and then turned to enter the cavity 222 (
The attachment region 202 of the protective system 600 operates with the interlocking member 104 of the mount assembly 100 in the same manner as the interlocking member 104 operates with the second portion 200 of the mounting arrangement described above. In use, the attachment region 202 can be manipulated to pass the interlocking member 104 through the opening 204 of the attachment region 202. The protective system 600 can be pushed toward the base 102 of the mount assembly 100 against the biasing force of the biasing member 124. The protective system 600 is pushed until the pressure plate 122 is moved toward the base a sufficient distance that the tabs 112 of the interlocking member 104 clear the wall(s) 220 of the attachment region 202. The protective system 600 can then be turned to align the cavities 222 with the tabs 112 of the interlocking member 104. The protective system 600 can then be released in the axial direction such that the pressure plate 122 moves the protective system 600 in the axial direction, or the protective system 600 can be moved in the axial direction, to position the tabs 112 of the interlocking member 104 within the cavities 222 of the attachment region 202. The force of the biasing member 124 acting on the pressure plate 122 creates a retention force that inhibits or prevents unintentional rotation of the protective system 600 relative to the interlocking member 104 (and, thus, separation of the protective system 600 from the mount assembly 100).
To remove the protective system 600 from the mount assembly 100, the user pushes down on the protective system 600 (toward the base 102) with sufficient force to overcome the biasing force of the biasing member 124 so that the tabs 112 are disengaged from the cavities 222. The protective system 600 can then be rotated to align the tabs 112 with the access spaces 212 of the attachment region 202, which permits the interlocking member 104 to pass through the opening of the attachment region 202 of the protective system 600. Advantageously, the assembly of the protective system 600 to the mount assembly 100 and the removal of the protective system 600 from the mount assembly 100 can be accomplished by the user using a single hand.
It should be emphasized that many variations and modifications may be made to the herein-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims. Moreover, any of the steps described herein can be performed simultaneously or in an order different from the steps as ordered herein. Moreover, as should be apparent, the features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Moreover, the following terminology may have been used herein. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more items. The term “ones” refers to one, two, or more, and generally applies to the selection of some or all of a quantity. The term “plurality” refers to two or more of an item. The term “about” or “approximately” means that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.
Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also interpreted to include all of the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but should also be interpreted to also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3 and 4 and sub-ranges such as “about 1 to about 3,” “about 2 to about 4” and “about 3 to about 5,” “1 to 3,” “2 to 4,” “3 to 5,” etc. This same principle applies to ranges reciting only one numerical value (e.g., “greater than about 1”) and should apply regardless of the breadth of the range or the characteristics being described. A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to selection of one of two or more alternatives, and is not intended to limit the selection to only those listed alternatives or to only one of the listed alternatives at a time, unless the context clearly indicates otherwise.
This application claims the benefit of U.S. Provisional Application No. 62/980,632, filed Feb. 24, 2020, entitled ELECTRONIC DEVICE MOUNT. This application hereby incorporates by reference the above-identified provisional application in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3080634 | Stig | Mar 1963 | A |
3179367 | Rapata | Apr 1965 | A |
3986780 | Nivet | Oct 1976 | A |
6305588 | Michel | Oct 2001 | B1 |
7140586 | Seii | Nov 2006 | B2 |
D564754 | Tages et al. | Mar 2008 | S |
7374142 | Carnevali | May 2008 | B2 |
7523906 | Bennett | Apr 2009 | B2 |
D606738 | Hofer et al. | Dec 2009 | S |
7652888 | Bohlinger et al. | Jan 2010 | B2 |
7685904 | Cutsforth | Mar 2010 | B2 |
D627771 | Smith et al. | Nov 2010 | S |
7930006 | Neu et al. | Apr 2011 | B2 |
D646672 | Fathollahi | Oct 2011 | S |
D647085 | Chung et al. | Oct 2011 | S |
D653190 | Richter | Jan 2012 | S |
D654043 | Pan et al. | Feb 2012 | S |
8167127 | Martin et al. | May 2012 | B2 |
8172247 | Weber et al. | May 2012 | B2 |
8267418 | Chuang | Sep 2012 | B1 |
8317067 | Lewis | Nov 2012 | B2 |
D671932 | Azoulay | Dec 2012 | S |
8439239 | Lee | May 2013 | B2 |
8469245 | Gregory et al. | Jun 2013 | B2 |
D685362 | Murchison et al. | Jul 2013 | S |
D685363 | Murchison et al. | Jul 2013 | S |
D685785 | Seoc et al. | Jul 2013 | S |
D687004 | Behling | Jul 2013 | S |
8490789 | Lach et al. | Jul 2013 | B2 |
8544644 | Meehan | Oct 2013 | B2 |
D697060 | Yang | Jan 2014 | S |
8708151 | Whitten | Apr 2014 | B2 |
D711886 | Kerawala et al. | Aug 2014 | S |
8800763 | Hale | Aug 2014 | B2 |
8830663 | Child et al. | Sep 2014 | B2 |
D718290 | Whitten et al. | Nov 2014 | S |
8936222 | Bastian et al. | Jan 2015 | B1 |
D725119 | Gaylord | Mar 2015 | S |
D726170 | Ng | Apr 2015 | S |
D726732 | Lay et al. | Apr 2015 | S |
D739857 | Lay et al. | Sep 2015 | S |
9185953 | Whitten et al. | Nov 2015 | B2 |
9243739 | Peters | Jan 2016 | B2 |
9383774 | Whitten et al. | Jul 2016 | B2 |
9402016 | Hidalgo | Jul 2016 | B1 |
9498034 | Whitten et al. | Nov 2016 | B2 |
9592871 | Whitten et al. | Mar 2017 | B2 |
9616821 | EIharar | Apr 2017 | B2 |
9700114 | Whitten et al. | Jul 2017 | B2 |
10070707 | Whitten et al. | Sep 2018 | B2 |
10093377 | Whitten et al. | Oct 2018 | B2 |
10112670 | Whitten et al. | Oct 2018 | B2 |
10122400 | Tiller et al. | Nov 2018 | B2 |
10326488 | Wojcik | Jun 2019 | B2 |
10420407 | Whitten et al. | Sep 2019 | B2 |
10864956 | Whitten et al. | Dec 2020 | B2 |
11044974 | Whitten et al. | Jun 2021 | B2 |
20020139822 | Infanti | Oct 2002 | A1 |
20040204169 | Goradesky | Oct 2004 | A1 |
20060147080 | Wilson et al. | Jul 2006 | A1 |
20060229740 | Kreisel et al. | Oct 2006 | A1 |
20070014120 | Kitamura | Jan 2007 | A1 |
20070174187 | Altberg et al. | Jul 2007 | A1 |
20070212931 | Livingston | Sep 2007 | A1 |
20070221694 | Aguiliar | Sep 2007 | A1 |
20080023508 | Harchol | Jan 2008 | A1 |
20080251512 | Griffin et al. | Oct 2008 | A1 |
20080314941 | Knych et al. | Dec 2008 | A1 |
20100084527 | Lau et al. | Apr 2010 | A1 |
20110043086 | Cui et al. | Feb 2011 | A1 |
20110143583 | Zilmer et al. | Jun 2011 | A1 |
20110227735 | Fawcett et al. | Sep 2011 | A1 |
20120298820 | Manolidis | Nov 2012 | A1 |
20130292270 | Lach et al. | Nov 2013 | A1 |
20130292296 | Kang et al. | Nov 2013 | A1 |
20140287800 | Ho | Sep 2014 | A1 |
20140355200 | Thiers | Dec 2014 | A1 |
20150189963 | Lai et al. | Jul 2015 | A1 |
20150201723 | Rayner et al. | Jul 2015 | A1 |
20160192752 | Lach et al. | Jul 2016 | A1 |
20170183052 | Whitten et al. | Jun 2017 | A1 |
20180099714 | Whitten et al. | Apr 2018 | A1 |
20200077759 | Whitten et al. | Mar 2020 | A1 |
20210188380 | Whitten et al. | Jun 2021 | A1 |
20210315340 | Whitten et al. | Oct 2021 | A1 |
20220117384 | Whitten | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
20 2004 017 041 | Mar 2005 | DE |
WO 2013106849 | Jul 2013 | WO |
Entry |
---|
International Search Report and Written Opinion re International Application No. PCT/US2013/021474 dated Apr. 2, 2013, in 12 pages. |
Bicio—GoRide—Bike Mount for iPhone 3G/3GS, http://www.bicio.com/GoRide_iphoneBikeMount.php, accessed via web archive, dated Nov. 29, 2011. |
Bicio—GoRide Product page depicting an iPhone Bike Mount and Base Mount, http://www.bicio.com/category-bike.php, accessed via web archive, dated Dec. 8, 2011. |
Bicio —GoRide iPhone Bike Mount, http://www.bicio.com/GoRide_iphoneBase.php, accessed via web archive, dated Apr. 16, 2011. |
The Wallee—Features page depicting iPad hard case and wall plate, http://thewallee.com/site/about (“features” tab), accessed via web archive, dated Jan. 8, 2011. |
The Wallee—Technical Specifications page depicting iPad hard case and wall plate, http://thewallee.com/site/about (“tech specs” tab), accessed via web archive, dated Jan. 8, 2011. |
“The Wallee Wall Mount + Hard Case System for iPad”, The Gadgeteer (Jul. 29, 2010), available at http://the-gadgeteer.com/2010/07/29/the-wallee-wall-mount-hard-case-system-for-ipad/. |
Donovan, Thomas J., Letter to counsel for Applicant, Dec. 8, 2017. |
The Wallee iPad Case and Wall Mount, Jan. 2011 https://web.archive.org/web/20110108191535/http://thewallee.com/#, in 89 pages. |
Affidavit of Christopher Buttler dated Nov. 18, 2017 and Exhibits Welcome to iBikeMount.com -The Bike Mount Solution for iPho . . . , https://web.archive.org/web/20090721175904/http://www.ibikemount.com:80/index.html, in 20 pages. |
Donovan, Thomas J., Letter to counsel for Applicant, dated Mar. 15, 2018, and accompanying exhibits to letter. |
Number | Date | Country | |
---|---|---|---|
20210261215 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62980623 | Feb 2020 | US |