This relates to electronic devices, and more particularly, to antennas for electronic devices with wireless communications circuitry.
Electronic devices are often provided with wireless communications capabilities. To satisfy consumer demand for small form factor wireless devices, manufacturers are continually striving to implement wireless communications circuitry such as antenna components using compact structures. At the same time, there is a desire for wireless devices to cover a growing number of communications bands.
Because antennas have the potential to interfere with each other and with components in a wireless device, care must be taken when incorporating antennas into an electronic device. Moreover, care must be taken to ensure that the antennas and wireless circuitry in a device are able to exhibit satisfactory performance over a range of operating frequencies.
It would therefore be desirable to be able to provide improved wireless communications circuitry for wireless electronic devices.
An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. A display may be mounted on a front face of the device. The display may include a display module with conductive display structures and a display cover layer that overlaps the display module. The conductive display structures may include portions of a touch sensor layer, portions of a display layer that displays images, portions of a near field communications antenna layer, a metal frame for the display module, a metal back plate for the display module, or other conductive structures. Printed circuits having corresponding ground traces may be coupled to the display module for conveying data to and/or from the display module (e.g., touch sensor data, near field communications data, image data, etc.).
The electronic device may include wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and an antenna such as a slot antenna. The conductive display structures may be separated from the metal sidewalls by a gap that runs around the display module. The slot antenna may be fed using an antenna feed having a positive feed terminal coupled to the conductive display structures and a ground feed terminal coupled to the metal sidewalls.
A conductive interconnect may be coupled to the metal sidewalls (e.g., using a conductive fastener) and may extend across the gap to the display module. The conductive interconnect may be shorted to the conductive display structures in the display module or may be capacitively coupled to the conductive display structures in the display module. If desired, the conductive interconnect may be shorted to the ground traces on the printed circuits coupled to the display module (e.g., without being capacitively coupled or shorted to the conductive display structures). When configured in this way, the metal sidewalls, the conductive display structures, and the conductive interconnect may define the edges of a slot element (e.g., a slot antenna resonating element) for the slot antenna. The perimeter of the slot element (e.g., as defined by the metal sidewalls, the conductive display structures, and the conductive interconnect) may support coverage in one or more frequency bands. The presence of the grounded conductive interconnect may serve to define part of the slot element while mitigating excessively strong electric fields within the gap, thereby improving antenna efficiency relative to scenarios where the conductive interconnect is absent from the electronic device.
An electronic device such as electronic device 10 of
Electronic device 10 may be a computing device such as a laptop computer, a computer monitor containing an embedded computer, a tablet computer, a cellular telephone, a media player, or other handheld or portable electronic device, a smaller device such as a wristwatch device, a pendant device, a headphone or earpiece device, a device embedded in eyeglasses or other equipment worn on a user's head, or other wearable or miniature device, a television, a computer display that does not contain an embedded computer, a gaming device, a navigation device, an embedded system such as a system in which electronic equipment with a display is mounted in a kiosk or automobile, equipment that implements the functionality of two or more of these devices, or other electronic equipment. In the illustrative configuration of
In the example of
Display 14 may be formed at the front side (face) of device 10. Housing 12 may have a rear housing wall such as rear wall 12R that opposes front face of device 10. Housing sidewalls 12W may surround the periphery of device 10 (e.g., housing sidewalls 12W may extend around peripheral edges of device 10). Rear housing wall 12R may be formed from conductive materials and/or dielectric materials. Examples of dielectric materials that may be used for forming rear housing wall 12R include plastic, glass, sapphire, ceramic, wood, polymer, combinations of these materials, or any other desired dielectrics. Rear housing wall 12R and/or display 14 may extend across some or all of the length (e.g., parallel to the X-axis of
Display 14 may be a touch screen display that incorporates a layer of conductive capacitive touch sensor electrodes or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) or may be a display that is not touch-sensitive. Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
Display 14 may include an array of display pixels formed from liquid crystal display (LCD) components, an array of electrophoretic display pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels, an array of electrowetting display pixels, or display pixels based on other display technologies.
Display 14 may be protected using a display cover layer. The display cover layer may be formed from a transparent material such as glass, plastic, sapphire or other crystalline dielectric materials, ceramic, or other clear materials. The display cover layer may extend across substantially all of the length and width of device 10, for example.
Device 10 may include buttons such as button 18. There may be any suitable number of buttons in device 10 (e.g., a single button, more than one button, two or more buttons, five or more buttons, etc. Buttons may be located in openings in housing 12 (e.g., in side wall 12W or rear wall 12R) or in an opening in display 14 (as examples). Buttons may be rotary buttons, sliding buttons, buttons that are actuated by pressing on a movable button member, etc. Button members for buttons such as button 18 may be formed from metal, glass, plastic, or other materials. Button 18 may sometimes be referred to as a crown in scenarios where device 10 is a wristwatch device.
Device 10 may, if desired, be coupled to a strap such as strap 16. Strap 16 may be used to hold device 10 against a user's wrist (as an example). In the example of
A schematic diagram showing illustrative components that may be used in device 10 is shown in
Storage and processing circuitry 28 may be used to run software on device 10, such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc. To support interactions with external equipment, storage and processing circuitry 28 may be used in implementing communications protocols. Communications protocols that may be implemented using storage and processing circuitry 28 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, cellular telephone protocols, MIMO protocols, antenna diversity protocols, etc.
Input-output circuitry 44 may include input-output devices 32. Input-output devices 32 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 32 may include user interface devices, data port devices, and other input-output components. For example, input-output devices 32 may include touch screens, displays without touch sensor capabilities, buttons, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, buttons, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, light-emitting diodes, motion sensors (accelerometers), capacitance sensors, proximity sensors, magnetic sensors, force sensors (e.g., force sensors coupled to a display to detect pressure applied to the display), etc.
Input-output circuitry 44 may include wireless circuitry 34. Wireless circuitry 34 may include coil 50 and wireless power receiver 48 for receiving wirelessly transmitted power from a wireless power adapter. To support wireless communications, wireless circuitry 34 may include radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas such as antennas 40, transmission lines, and other circuitry for handling RF wireless signals. Wireless signals can also be sent using light (e.g., using infrared communications).
Wireless circuitry 34 may include radio-frequency transceiver circuitry 90 for handling various radio-frequency communications bands. For example, circuitry 34 may include transceiver circuitry 36, 38, 42, and 46. Transceiver circuitry 36 may be wireless local area network transceiver circuitry that may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications and that may handle the 2.4 GHz Bluetooth® communications band (or other wireless personal area network bands). Circuitry 34 may use cellular telephone transceiver circuitry 38 for handling wireless communications in frequency ranges such as a low communications band from 700 to 960 MHz, a midband from 1400 MHz or 1500 MHz to 2170 or 2200 MHz (e.g., a midband with a peak at 1700 MHz), and a high band from 2200 or 2300 to 2700 MHz (e.g., a high band with a peak at 2400 MHz) or other communications bands between 600 MHz and 4000 MHz or other suitable frequencies (as examples). Circuitry 38 may handle voice data and non-voice data.
Wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 34 may include 60 GHz transceiver circuitry, circuitry for receiving television and radio signals, paging system transceivers, near field communications (NFC) transceiver circuitry 46 (e.g., an NFC transceiver operating at 13.56 MHz or another suitable frequency), etc. Wireless circuitry 34 may include satellite navigation system circuitry such as global positioning system (GPS) receiver circuitry 42 for receiving GPS signals at 1575 MHz or for handling other satellite positioning data. In WiFi® and Bluetooth® links and other short-range wireless links, wireless signals are typically used to convey data over tens or hundreds of feet. In cellular telephone links and other long-range links, wireless signals are typically used to convey data over thousands of feet or miles.
Wireless circuitry 34 may include antennas 40. Antennas 40 may be formed using any suitable antenna types. For example, antennas 40 may include antennas with resonating elements that are formed from slot antenna structures, loop antenna structures, patch antenna structures, inverted-F antenna structures, planar inverted-F antenna structures, helical antenna structures, monopole antennas, dipole antenna structures, hybrids of these designs, etc. Different types of antennas may be used for different bands and combinations of bands. For example, one type of antenna may be used in forming a local wireless link antenna whereas another type of antenna is used in forming a remote wireless link antenna. If desired, space may be conserved within device 10 by using a single antenna to handle two or more different communications bands. For example, a single antenna 40 in device 10 may be used to handle communications in a WiFi® or Bluetooth® communication band at 2.4 GHz, a GPS communications band at 1575 MHz, a WiFi® or Bluetooth® communications band at 5.0 GHz, and one or more cellular telephone communications bands such as a cellular telephone midband between 1500 MHz and 2170 MHz.
It may therefore be desirable to implement antennas in device 10 using portions of electrical components that would otherwise not be used as antennas and that support additional device functions. As an example, it may be desirable to induce antenna currents in components such as display 14, so that display 14 and/or other electrical components (e.g., a touch sensor, near-field communications loop antenna, conductive display assembly or housing, conductive shielding structures, etc.) can serve as an antenna for Wi-Fi, Bluetooth, GPS, cellular frequencies, and/or other frequencies without the need to incorporate bulky antenna structures in device 10.
To provide antenna structures 40 with the ability to cover communications frequencies of interest, antenna structures 40 may be provided with circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna). If desired, antenna structures 40 may be provided with adjustable circuits such as tunable components 63 to tune antennas over communications bands of interest. Tunable components 63 may include tunable inductors, tunable capacitors, or other tunable components. Tunable components such as these may be based on switches and networks of fixed components, distributed metal structures that produce associated distributed capacitances and inductances, variable solid state devices for producing variable capacitance and inductance values, tunable filters, or other suitable tunable structures.
During operation of device 10, control circuitry 28 may issue control signals on one or more paths such as path 64 that adjust inductance values, capacitance values, or other parameters associated with tunable components 63, thereby tuning antenna structures 40 to cover desired communications bands.
Path 60 may include one or more radio-frequency transmission lines. As an example, signal path 60 of
Transmission line 60 may be directly coupled to an antenna resonating element and ground for antenna 40 or may be coupled to near-field-coupled antenna feed structures that are used in indirectly feeding a resonating element for antenna 40. As an example, antenna structures 40 may form a slot antenna, an inverted-F antenna, a loop antenna, a patch antenna, or other antenna having an antenna feed 62 with a positive antenna feed terminal such as terminal 70 and a ground antenna feed terminal such as ground antenna feed terminal 72. Positive transmission line conductor 66 may be coupled to positive antenna feed terminal 70 and ground transmission line conductor 68 may be coupled to ground antenna feed terminal 72. If desired, antenna 40 may include an antenna resonating element that is indirectly fed using near-field coupling. In a near-field coupling arrangement, transmission line 60 is coupled to a near-field-coupled antenna feed structure that is used to indirectly feed antenna structures such as the antenna resonating element. This example is merely illustrative and, in general, any desired antenna feeding arrangement may be used.
In one suitable arrangement, antenna 40 may be formed using a slot antenna structure. An illustrative slot antenna structure that may be used for forming antenna 40 is shown in
Antenna feed 62 for antenna 40 may be formed using positive antenna feed terminal 70 and ground antenna feed terminal 72. In general, the frequency response of an antenna is related to the size and shapes of the conductive structures in the antenna. Slot antennas of the type shown in
Feed 62 may be coupled across slot 104 at a location between opposing edges 114 and 116 of slot 104. For example, feed 62 may be located at a distance 76 from side 114 of slot 104. Distance 76 may be adjusted to match the impedance of antenna 40 to the impedance of transmission line 60 (
The example of
In the example of
Antenna feed 62 may have a ground feed terminal 72 coupled to housing 12 and a positive feed terminal 70 coupled to conductive display structures 110. Positive feed terminal 70 may be coupled to edge 118, edge 120, or edge 122 of conductive display structures 110, for example. In the example of
Antenna feed 62 may convey antenna currents around the perimeter of slot 104 (e.g., over conductive housing structures 12 and conductive display structures 110. The antenna currents may generate corresponding wireless signals that are transmitted by antenna 40 or may be generated in response to corresponding wireless signals received by antenna 40 from external equipment. The lengths of edges 121, 123, 125, 116, 122, 120, and 118 may be selected so that length L is approximately equal to one-half of the wavelength of operation of antenna 40, for example (e.g., an effective wavelength of operation of antenna 40 given dielectric loading conditions at slot 104).
One or more conductive interconnect paths 112 (e.g., first conductive interconnect path 112-1 and second conductive interconnect path 112-2) may define portions of the edges of slot 104 and may serve to effectively define the length L of slot 104. Conductive paths 112 may be held at a ground potential and/or may short conductive display structures 110 to housing 12. When configured in this way, antenna currents conveyed by feed 62 may experience a short circuit impedance perpendicular to edges 114 and 116, thereby serving to define a part of the perimeter of slot 104.
If desired, the location of conductive paths 112-1 and 112-2 may be adjusted (e.g., as shown by arrows 124) to extend the length L of slot 104 (e.g., so that slot 104 resonates at desired frequencies). In one suitable arrangement, length L is selected so that slot 104 covers a first frequency band (e.g., a first frequency band from 1.5 GHz to 2.4 GHz that covers WLAN, WPAN, satellite navigation communications, and/or a cellular midband frequencies) and a second frequency band defined by a harmonic mode of slot 104 (e.g., a second frequency band from 5.0 GHz to 6.0 GHz that covers WLAN communications frequencies). Conductive paths 112 may be directly connected to display structures 110, may be indirectly coupled to display structures 110 via capacitive coupling, or may be separated from display structures 110 (e.g., paths 112 need not be in contact with display structures 110 to electrically define part of the perimeter of slot 104).
In scenarios where interconnect paths 112 are absent from device 10, excessively strong electric fields may be generated between display structures 110 and housing 12 at the side of device 10 opposing feed 62. The presence of these fields may limit the overall antenna efficiency of antenna 40. However, the presence of interconnect paths 112 may effectively form a short circuit between structures 110 and housing 12. This may, for example, configure housing 12 and conductive display structures 110 to electrically behave as a single metal body, mitigating the excessive electric field at the side of device 10 opposing feed 62 and serving to increase antenna efficiency relative to scenarios where interconnect paths 112 are absent from device 10. The presence of interconnect paths 112 may allow for the width W of slot 104 and the thickness of device 10 to be reduced given equal antenna efficiencies relative to scenarios where interconnect paths 112 are not formed within device 10, for example.
Conductive interconnect paths 112 may include any desired conductive structures such as conductive adhesive (e.g., conductive tape), conductive fasteners (e.g., conductive screws or clips such as blade clips), conductive pins, solder, welds, conductive traces on flexible printed circuits, metal foil, stamped sheet metal, integral device housing structures, conductive brackets, conductive springs, and/or any other desired structures for defining the perimeter of slot 104 and/or effectively forming an electrical short circuit path between display structures 110 and housing 12.
In the example of
Conductive display structures 110 may be coupled to ground (e.g., housing wall 12W) by interconnect path 112 (e.g., across gap 113 at the side of structures 110 opposing feed 62). Interconnect path 112 may include conductive structures that are directly connected to display structures 110, may include conductive structures that are capacitively coupled to (but not in contact with) display structures 110 (e.g., while still spanning gap 113 and electrically shorting display structures 110 to housing 12), and/or may include conductive structures that are not coupled to display structures 110 (e.g., while still spanning gap 113 and being held at a ground potential, thereby serving to electrically define the perimeter of slot 104 in the X-Y plane of
Antenna 40 may be used to transmit and receive radio-frequency signals in WLAN and/or WPAN bands at 2.4 GHz and 5.0 GHz, in cellular telephone bands between 1.7 GHz and 2.2 GHz, in satellite navigation bands at 1.5 GHz, and/or other desired frequency bands. Additional antennas may also be provided in device 10 to handle these frequency bands and/or other frequency bands. The configuration for antenna 40 of
Display module 140 may include conductive components that are used in forming conductive display structures 110 of slot antenna 40 (
The components that form conductive display structures 110 may include, for example, planar components on one or more layers 142 (e.g., a first layer 142-1, a second layer 142-2, a third layer 142-3, or other desired layers). As one example, layer 142-1 may form a touch sensor for display 14, layer 142-2 may form a display panel (sometimes referred to as a display, display layer, or pixel array) for display 14, and layer 142-3 may form a near-field communications antenna for device 10 and/or other circuitry for supporting near-field communications (e.g., at 13.56 MHz). Touch sensor 142-1 may be a capacitive touch sensor and may be formed from a polyimide substrate or other flexible polymer layer with transparent capacitive touch sensor electrodes (e.g., indium tin oxide electrodes), for example. Display panel 142-2 may be an organic light-emitting diode display layer or other suitable display layer. Near-field communications layer 142-3 may be formed from a flexible layer that includes a magnetic shielding material (e.g., a ferrite layer or other magnetic shielding layer) and that includes loops of metal traces). If desired, a conductive back plate, metal shielding cans or layers, and/or a conductive display frame may be formed under and/or around layer 142-3 and may provide structural support and/or a grounding reference for the components of module 140. Module 140 may sometimes be referred to herein as display assembly 140.
Conductive material in layers 142-1, 142-2, 142-3, a conductive back plate for display 14, conductive shielding layers, conductive shielding cans, and/or a conductive frame for display 14 may be used in forming conductive structures 110 defining slot elements 104 (e.g., slot antenna resonating elements) of slot antenna 40. This and/or other conductive material in display 14 used to form conductive display structures 110 may be coupled together using conductive traces, vertical conductive interconnects or other conductive interconnects, and/or via capacitive coupling, for example.
Antenna 40 may be fed using antenna feed 62. Feed 62 may have a positive terminal such as terminal 70 that is coupled to display module 140 and therefore conductive display structures 110 (e.g., to near-field communications layer 142-3, display layer 142-2, touch layer 142-1, a metal back plate for module 140, and/or a metal display frame for module 140). Feed 62 may have a ground terminal such as terminal 72 that is coupled to an antenna ground in device 10 (e.g., metal housing wall 12W).
As shown in
Display module 140 may include one or more connectors 154. Connectors 154 may be coupled to one or more printed circuits 156. Printed circuits 156 may include flexible printed circuits (sometimes referred to herein as display flexes 156), rigid printed circuit boards, or traces on other substrates if desired. Connectors 154 may convey signals between layers 142 of display module 140 and display interface circuitry 158 on logic board 163 over display flexes 156.
As an example, display module 140 may include a first connector 154 that conveys near field communications signals to and/or from layer 142-1 over a first flex circuit 156, a second connector 154 that conveys display data (e.g., image data) from display interface 158 to display layer 142-2 over a second flex circuit 156 (e.g., layer 142-2 may emit light corresponding to the display data), and a third connector 154 may convey touch sensor signals from layer 142-1 to interface circuitry 158 over a third flex circuit 156. Connectors 154 may include conductive contact pads, conductive pins, conductive springs, conductive adhesive, conductive clips, solder, welds, conductive wires, and/or any other desired conductive interconnect structures and/or fasteners for conveying data associated with display module 140 between display module 140 and circuitry on logic board 163 or elsewhere in device 10.
Radio-frequency transceiver 90 may be coupled to feed 62 of antenna 40 over radio-frequency transmission line 60 (
Ground conductor 68 in transmission line 60 (
If desired, a conductive tab or blade such as conductive tab 150 may be coupled to the conductive structures of display module 140 (e.g., conductive structures in layers 142, a conductive back plate, a conductive frame, conductive shielding cans or layers, and/or other conductive structures in module 140). Clip 152 may mate with tab 150 to form an electrical connection between transmission line 60 and feed terminal 70 (e.g., feed terminal 70 may be located on tab 150 when clip 152 is attached to tab 150). Clip 152 may, for example, be a tulip clip or other clip that has prongs or other structures that exerts pressure towards tab 150, thereby ensuring that a robust and reliable electrical connection is held between tab 150 and clip 152 over time.
When configured in this way, antenna currents may be conveyed over feed 62 and may begin to flow around the perimeter of slot 104 (e.g., in the X-Y plane of
As shown in
When configured in this way, conductive interconnect 172 may define a portion of the perimeter of slot 104 in antenna 40 (e.g., in the X-Y plane of
This example is merely illustrative. Interconnect paths 112 need not directly contact display module 140. In another suitable arrangement, interconnect paths 112 may span gap 113 without directly contacting display module 140 (e.g., as shown by conductive interconnect structures 174). In this scenario, interconnect structures 174 may be electrically shorted to one or more display flexes 156 (e.g., to ground conductors or other conductive material in display flexes 156). For example, interconnect structures 174 may be electrically shorted to display flexes 156 using conductive adhesive or conductive fastening structures such as pins, springs, screws, clips, brackets, and/or other structures that ensure that interconnect structures 174 are held in contact with display flexes 174. Interconnect 174 may extend across gap 113 and may be shorted to housing wall 12W using screw 170 or other fastening structures.
If desired, conductive interconnect structures 174 may be located sufficiently close to the conductive material in display module 140 so as to effectively short conductive display structures 110 to ground (e.g., at radio-frequencies handled by feed 62). For example, interconnect structures 174 may be capacitively coupled to conductive display structures 110 in display module 140 and antenna currents associated with antenna 40 may flow between display module 140 and housing wall 12W over interconnect 174 (e.g., via capacitive coupling). Conductive interconnect structures 174 need not be shorted to display flexes 156 in this scenario, if desired.
In another suitable arrangement, conductive interconnect structures 174 may be located far enough away from display module 140 so that interconnect structures 174 are not capacitively coupled to the conductive material in display module 140. In this scenario, because interconnect structure 174 is held at a ground potential (e.g., because interconnect structure 174 shorts ground structures in display flexes 156 to grounded housing wall 12W), interconnect structure 174 may electrically define edges of slot 104 despite not actually being in contact with or capacitively coupled to conductive display structures 110 in module 140, thereby defining length L of slot 104 (e.g., in the X-Y plane as shown in
The example of
Tabs, clips, or other protruding portions of display module 140 such as tab 150 may serve as antenna feed terminal 70. Tab 150 may be received between flexible spring fingers such as metal prongs in clip 152. A rear perspective view of module 140 in an illustrative configuration in which tab 150 has been formed from a strip of metal is shown in
A perspective view of clip 152 in an illustrative configuration in which clip 152 is secured using fasteners such as screws 174 is shown in
A rear perspective view of illustrative electrical components that may be stacked under display cover layer 146 and that may form antenna conductor 110 of antenna 40 is shown in
Layer 142-1, layer 142-2, and layer 142-3 may be interconnected with other components in device 10 such as display module interface circuitry 158 (
Components 212 may be mounted to layer 142-1, 142-2, and/or 142-3. Components 212 may, for example, include near-field communications circuitry, touch sensor processing circuitry, and/or display driver circuitry. Other types of components may be mounted in the stack of module 140 if desired. For example, a force sensor layer may be included in module 140. As another example, the functions of two or more of these layers may be consolidated. For example, capacitive touch sensor electrodes for a capacitive touch sensor may be formed from metal traces on organic light-emitting diode display layer 142-2 and a separate touch sensor layer 142-1 may be omitted. Near-field communications antenna layer 142-3 may also be omitted (e.g., in a configuration for device 10 without near-field communications circuitry and/or in a configuration for device 10 in which the near-field communications antenna is located in a different portion of housing 12). The configuration of display module 140 of
As shown in
Conductive interconnect structure 172 may include a first region (portion) 172P that is coupled to conductive structures 210 on module 140 and a second (tail) region 172T. Region 172P may be secured to layer 142-3 or other portions of module 140 using conductive adhesive, conductive screws, conductive springs (e.g., conductive springs that exert a force on region 172P towards layer 142-3), or any other desired conductive fastening structures. Conductive interconnect structure 172 may include conductive traces on a flexible printed circuit, stamped sheet metal, metal foil, a layer of conductive adhesive, a conductive layer having adhesive and non-adhesive portions, combinations of these, or any other desired conductive structures or layers.
When display 14 is assembled on housing 12, tail region 172T may extend across gap 113 (
As shown in
Tab 202-1 of conductive interconnect structure 172 may be secured to housing wall 12W using conductive screw 170-1 and/or other conductive fastening structures. If desired, screw 170-1 may be received by a mating threaded hole 171-1 in housing wall 12W. Tab 202-2 of conductive interconnect structure 172 may be secured to housing wall 12W using conductive screw 170-2 and/or other conductive fastening structures. If desired, screw 170-1 may be received by a mating threaded hole 171-2 in housing wall 12W. Conductive interconnect 172 may short conductive structures in display module 140 to housing sidewall 12W over tabs 202 and screws 170. When display 14 is closed over sidewalls 12W, conductive interconnect 172 may bridge gap 113 to define the length L of slot element 104.
As shown in
Conductive interconnect structure 174 may include one or more branches 226. For example, conductive interconnect structure 174 may include a first branch 226-1, a second branch 226-2, and a third branch 226-3. While the use of different branches may reduce the amount of space required to form interconnect structure 174 in device 10, in another suitable arrangement, each of the branches may be formed as a part of a single continuous (e.g., planar) conductor.
When device 10 is fully assembled, conductive interconnect structure 174 may be lowered towards logic board 163 as shown by arrows 230. This may place branch 226-1 into contact with conductive region 220-1, may place branch 226-2 into contact with conductive region 220-2, and may place branch 226-3 into contact with conductive region 220-3 on flex circuits 156. If desired, conductive adhesive, conductive screws, solder, welds, clips, or other conductive fastening structures may be used to secure branches 226 to corresponding conductive regions 220 when interconnect structure 174 is lowered onto device 10. Tab 224-1 may be secured to housing wall 12W via a first screw 170 extending through opening 224-1 and mating with threaded hole 171-2 in housing wall 12W. Tab 224-2 may be secured to housing wall 12W via a second screw 170 extending through opening 224-2 and mating with threaded hole 171-1 in housing wall 12W. This is merely illustrative and, if desired, other conductive fasteners may be used. One or more than two tabs 224 may be used to secure interconnect structure 174 to housing wall 12W.
In this way, when fully assembled, conductive interconnect structure 170 may short grounded regions 220 on display flexes 156 to housing wall 12W. This may serve to electrically define at least some of the boundaries of slot element 104 (e.g., length L of slot element 104). If desired, branches 226 may be capacitively coupled to conductive structures in display module 140. In this scenario, branches 226 may short antenna currents flowing through display module 140 (e.g., conductive display structures 110) to housing sidewall 12W via capacitive coupling. Branches 226 need not be coupled to regions 220 on flexes 156 in this scenario if desired.
The example of
Curve 250 plots the antenna efficiency of antenna 40 when slot antenna 40 has a length L defined at least in part by conductive interconnect paths 112 (e.g., interconnect structures 172 as shown in
The example of
The foregoing is merely illustrative and various modifications can be made to the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
Number | Name | Date | Kind |
---|---|---|---|
8269675 | Kough et al. | Sep 2012 | B2 |
8493274 | Raura | Jul 2013 | B2 |
9024823 | Bevelacqua | May 2015 | B2 |
9627769 | Koo et al. | Apr 2017 | B2 |
20030189522 | Zeilinger | Oct 2003 | A1 |
20120299785 | Bevelacqua | Nov 2012 | A1 |
20140240176 | Tolbert et al. | Aug 2014 | A1 |
20140323063 | Xu | Oct 2014 | A1 |
20140329558 | Darnell | Nov 2014 | A1 |
20150280771 | Mow et al. | Oct 2015 | A1 |
20150351292 | Chang et al. | Dec 2015 | A1 |
20160248148 | Hill et al. | Aug 2016 | A1 |
20160309007 | Irci et al. | Oct 2016 | A1 |
20170077603 | Krogerus et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
104638361 | May 2015 | CN |
2006120250 | Nov 2006 | WO |
Entry |
---|
Ehman et al., U.S. Appl. No. 15/234,907, filed Aug. 11, 2016. |
Ehman et al., U.S. Appl. No. 15,234,918, filed Aug. 11, 2016. |
Jiang et al., U.S. Appl. No. 15/257,521, filed Sep. 6, 2016. |
Da Costa Bras Lima et al., U.S. Appl. No. 15/654,915, filed Jul. 20, 2017. |
Number | Date | Country | |
---|---|---|---|
20190074586 A1 | Mar 2019 | US |