The invention relates to electronic devices having display units that are moveable in relation to base units. The present invention is more particularly related to an electronic device and a method for controlling functionality of an electronic device in relation to a display unit.
Electronic devices, in general, and portable electronic devices such as personal digital assistants (PDA), laptop computers, in particular, as well as portable communication devices such as mobile phones, are becoming increasingly powerful and complex. More functionality is incorporated into the devices and this requires them to be more flexible in terms of user interaction, both in displaying information and also in receiving data. This becomes especially apparent in portable electronic devices, which are normally smaller than other consumer electronics products. More refined keyboards, user interaction means and connections are added to portable devices to enhance usability. Likewise, more refined ways of displaying information is added to portable electronic devices. This becomes especially apparent for the display component incorporated in portable electronic devices. For portable electronic devices one challenge is to increase the display area without increasing the bulkiness of the portable electronic device and at the same time keeping energy consumption at a minimum.
In order to save space and make the portable electronic devices more compact the display is sometimes foldable, e.g. in “clamshell”-type mobile phones. To minimize power consumption the display is only activated when the “clam-shell”-type mobile phone is unfolded. Minimizing power consumption is a key, especially for portable electronic devices.
For such electronic devices the display can be seen as provided in a display unit which is attached to and movable in relation to a base unit. However, in relation to such clam shell phones and other electronic devices where one display unit is movable in relation to a base unit, it would be of interest to increase the flexibility of the electronic device.
The present invention is therefore directed towards solving the problem of making a compact electronic device that has a display unit attached to a base unit more flexible. This is done by activating selected functionality of the electronic device based on the orientation of the display unit in relation to the base unit.
One object of the present invention is thus directed towards providing an electronic device with increased flexibility in user-device interaction while keeping the device bulkiness at a minimum.
A first aspect of the present invention is therefore directed towards an electronic device comprising:
A second aspect of the present invention includes the features of the first aspect, wherein the first sensing unit is provided at least partly on the second surface area, one of the sensing units is an elongated sensing unit and the other sensing unit is a spot sensing unit.
A third aspect of the present invention includes the features of the second aspect, wherein the first sensing unit is partly provided on a part of the first bounding side.
A fourth aspect of the present invention includes the features of the third aspect, wherein the first sensing unit stretches up to a position before a half-way line between the first and second surface areas on the first bounding side.
A fifth aspect of the present invention includes the features of the third aspect, wherein the first sensing unit stretches past the half-way line between the first and second surface areas on the first bounding side.
A sixth aspect of the present invention includes the features of the second aspect, wherein at least the first bounding side is curved.
A seventh aspect of the present invention includes the features of the second aspect, wherein the first sensing unit is the elongated sensing unit.
An eighth aspect of the present invention includes the features of the seventh aspect, wherein the part of the first sensing unit provided on the second surface area stretches from the first bounding side towards the second bounding side.
A ninth aspect of the present invention includes the features of the eighth aspect, wherein the part of the first sensing unit provided on the second surface area stretches up to the second bounding side.
A tenth aspect of the present invention includes the features of the ninth aspect, wherein the first sensing unit is provided also on at least a part of the second bounding side.
An eleventh aspect of the present invention includes the features of the eighth aspect, wherein there is a gap between the part of the first sensing unit provided on the second surface area and the second bounding side.
A twelfth aspect of the present invention includes the features of the second aspect, wherein the sensing arrangement is further arranged to detect and indicate a position of the first sensing unit in the direction of elongation and used in communication between the first and second sensing units and the orientation determining unit is further arranged to activate selected functionality of the electronic device related to the display unit based also on said position.
A thirteenth aspect of the present invention includes the features of the first aspect, wherein the display unit comprises a first display on the first surface area and a second display on the second surface area.
A fourteenth aspect of the present invention includes the features of the thirteenth aspect, wherein the orientation determining unit is arranged to activate functionality associated with the first display if it receives an indication of the first and second sensing units being able to communicate with each other from the orientation sensing arrangement and otherwise to activate functionality associated with the second display.
A fifteenth aspect of the present invention includes the features of the fourteenth aspect, wherein the orientation determining unit is arranged to deactivate functionality associated with the second display if it receives an indication of the first and second sensing units being able to communicate with each other and otherwise to deactivate functionality associated with the first display.
A sixteenth aspect of the present invention includes the features of the first aspect, wherein at least one of sensing units in the orientation sensing arrangement is partly electrically conductive, and the arrangement when being arranged to detect that the sensing units are able to communicate with each other is arranged to detect said communication through sensing a resistive, capacitive, or inductive change in the relationship between the sensing units.
A seventeenth aspect of the present invention includes the features of the first aspect, wherein at least one of the sensing units in the orientation sensing arrangement has an index of refraction that differs from the surrounding and the other is an optical detector, and said arrangement is arranged to detect that the sensing units are able to communicate with each other through the optical detector detecting a change in the index of refraction.
An eighteenth aspect of the present invention includes the features of the first aspect, wherein at least one of the sensing units in the orientation sensing arrangement is partly magnetic, and said arrangement when being arranged to detect that the sensing units are able to communicate with each other is arranged to detect a magnetic flux change caused by said one sensing unit.
A nineteenth aspect of the present invention includes the features of the first aspect, wherein the electronic device is a portable electronic device.
A twentieth aspect of the present invention includes the features of the nineteenth, wherein the portable electronic device is a portable communication device.
A twenty-first aspect of the present invention is directed towards a method for controlling functionality of an electronic device in relation to a display unit, the display unit comprising a first surface area and a second surface area joined to each other by a first and second opposite bounding sides and the display unit being fastened to and movable in relation to a base unit of the electronic device, comprising the steps of:
A twenty-second aspect of the present invention includes the features of the twenty-first aspect, wherein the first sensing unit is provided at least partly on the second surface area, one of the sensing units is an elongated sensing unit and the other sensing unit is a spot sensing unit and the step of detecting comprises detecting a position of the elongated sensing unit used in communication between the first and second sensing units, the step of indicating comprising also indicating said position and the step of activating comprises activating selected functionality of the electronic device based also on said position.
A twenty-third aspect of the present invention includes the features of the twenty-first aspect, wherein the first surface area comprises a first display and the second surface area comprises a second display and the step of activating comprises activating functionality associated with the first display if the sensing units are able to communicate with each other and otherwise activating functionality associated with the second display.
A twenty-fourth aspect of the present invention includes the features of the twenty-third aspect, further comprising the step of deactivating functionality associated with the second display if the sensing units are able to communicate with each other and otherwise deactivating functionality associated with the first display.
The present invention has a number of advantages. It controls the use of functionality associated with the electronic device in order to among other things save energy while still allowing a user a great freedom of use of the device. This is furthermore done without the user doing anything else than selecting how to orient the display unit in relation to the base unit. The invention furthermore allows for a compact design of the electronic device without sacrificing usability.
For a better understanding of the invention, and to show more clearly how it may be carried out, reference will now be made, by way of illustration only, to the following drawings in which:
a-e schematically show side views of some examples on how the display unit in the electronic device according to the first embodiment of the present invention can be moved in relation to the base unit;
The present invention relates to an electronic device comprising a display unit that can be moved in relation to a base unit 3.
As mentioned above the display unit can be moved in various ways in relation to the base unit. An exemplifying mechanical arrangement that can provide such movement will now be described in relation to
As can be seen from
As mentioned before, the above described mechanical solution is just one way in which the movement of the display unit can be provided in relation to the base unit. Other ways are possible. It is for instance possible with other hinge or clamp solutions. It is furthermore possible to provide more advanced fastening means e.g. magnetic clamps. The display unit can be rotated or translated by the user of the electronic device or through the use of automatic means in the electronic device 1, such as an electrical motor.
The sensing units may be made of materials that are able to detect changes in resistance, capacitance or magnetic flux. When the display unit is moved, either by translation, rotation, or a combination of the two, the two sensing units may come into proximity of or in contact with each other, which results in a change in resistance, capacitance or magnetic flux between them. This change is here sensed. The sensing units could be simple metal components. When the display unit is in a position relative to the base unit such that the sensing units are in physical contact there may be a reduction in resistance that is detected. The sensing units may also operate optically. The second sensing unit may include an integrated photodiode or camera sensor and a light source e.g. a light emitting diode (LED). The light from the light source may then be emitted from the second sensing unit and get reflected by the display unit 2 and detected by the photodiode. The first sensing unit may in such a realization be provided of a material with a refraction index that is different from the surrounding material and therefore result in a different reflection. In this way it is possible to determine if the sensing units are able to communicate with each other or not.
According to the first embodiment of the present invention the first elongated line sensor 15 stretches beyond the second surface area 5 and up onto the first bounding side. This will be shown in more detail later.
The displays described above preferably, have opposite projection directions. The displays accommodated on the first surface area and second surface area were above shown as having the same sizes. However, it should be realized that they can differ in size and also differ in the display technologies used.
The orientation determining unit may with advantage be provided in the form of a processor with accompanying memory comprising computer program code that provides selection of functionality according to a method that will to be described below. It may also be provided as a suitable programmed circuit such as an ASIC circuit.
Depending on how the orientation sensing arrangement is provided, either or both of the sensing units may communicate with the orientation determining unit 18. From a construction point of view, it may however be advantageous that the second sensing unit 16 is the one that communicates with the orientation determining unit 18, since the display unit is movable while the base unit is fixed.
With a display unit being provided with two displays and that can be moved as much as is indicated above, there are many instances when one of the displays cannot be seen or not used properly by a user of the device. Portable electronic devices are furthermore often battery powered. This means that if both are on or used all the time a lot of energy is wasted. This also means that the device may not be possible to use as long as is desirable without recharging the batteries. It is therefore of interest to limit the use of functionality associated with the electronic device, and especially associated with the display unit, while still allowing a user a great freedom of use of the device. It should thus be possible to selectively use the displays in order to save power. This should furthermore be possible to do without the user doing anything else than selecting how to orient the display unit in relation to the base unit.
The present invention is directed towards a way in which such dual displays can be selectively activated, where this selective use is provided automatically based on the orientation of the display unit in relation to the base unit.
A method according to which the electronic device can be operated for controlling functionality of an electronic device in relation to a display unit will now be described in relation to the previously mentioned
As the method is started, step 21, the orientation sensing arrangement 17 senses if the sensing units 15 and 16 are able to communicate with each other or not. In case they are, step 22, an indication is provided to the orientation determining unit 18, step 23. The orientation determining unit 18 here then activates the component 19 associated with the first display 6, step 24, and also deactivates the components 20 associated with the second display 14, step 25. It thus activates the functionality provided by the component 19 and deactivates the functionality provided by the component 20. If however, the sensing units 15 and 16 are not able to communicate with each other, step 22, no indication is provided. The orientation determining unit 18 therefore instead activates the components 20 associated with the second display 14, step 26, and deactivates the components 19 associated with the first display 6, step 27. It thus activates the functionality provided by the component 20 and deactivates the functionality provided by the component 19.
Here it should be realized that as an alternative, the orientation sensing arrangement may provide two indications, one that indicates the sensing units are able to communicate with each other and another which indicates that they are not.
a-e show various orientations of the display unit in relation to the base unit according to the first embodiment of the present invention. As can be seen in
In
In this way it is ensured that the various displays are activated based on the orientation of the display unit in relation to the base unit. Through providing the first sensing unit so that it stretches onto the first bounding side, it is furthermore possible to provide the lap top mode. By varying how long it stretches onto this first bounding side it is furthermore possible to determine at which angles the lap top mode is to cease to apply.
The present invention controls the use of functionality associated with the electronic device, and especially associated with the display unit in order to among other things save energy while still allowing a user a great freedom of use of the device. This is furthermore done without the user doing anything else than selecting how to orient the display unit in relation to the base unit. The invention furthermore allows for a compact design of the electronic device without sacrificing usability.
A second embodiment of the present invention will now be described in relation to
According to a third embodiment of the present invention that is shown in
There are a number of variations that are possible to make of the present invention apart from those already discussed above. The invention has for instance been described in relation to a portable electronic device in the form of a lap top computer. However, the present invention can be applied also on other portable electronic devices, such as personal digital assistants (PDAs), gaming machines, portable DVD players and recorders. It may also be provided in a portable communication device such as a mobile phone, which may with advantage be a phone that is based on the clam-shell type, an enhanced clam-shell phone.
The first sensing unit was above described as stretching out onto the first bounding side. In alternatives of the present invention it may not do so, but only be provided on the second surface area. As yet an alternative it may, in addition to stretching out onto the first bounding side also stretch out onto the second bounding side. In the case of the second embodiment, there may in this case be two sensing units provided on the display unit.
The components controlled need furthermore not be limited to components associated with the displays. Other components could include illuminations means providing such functionality as highlighting keypad features or keypad buttons. For an electronic device as shown in
It should also be realized that a keyboard or a keypad is no central part of the present invention, in fact the displays may themselves act as such user input units by being provided in the form of touch screens.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. The word “comprising” does not exclude the presence of elements or steps other than those listed in a claim, “a” or “an” does not exclude a plurality, and a single processor or other unit may fulfill the functions of several units recited in the claims. Any reference signs in the claims shall not be construed so as to limit their scope. Therefore the present invention is only to be limited by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
07118432.9 | Oct 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/52483 | 2/29/2008 | WO | 00 | 5/20/2010 |