1. Technical Field
The present disclosure relates to electronic devices, and particularly to an electronic device comprising a heat dissipation apparatus.
2. Description of Related Art
Cabinet servers generally include a number of storage apparatuses and a number of server units. Each of the storage apparatuses includes a number of hard disk drives generating a great amount of heat during operation. Each server unit includes a number of components generating a great amount of heat during operation. The heat needs to be dissipated timely to ensure the proper functioning of the cabinet server. Presently, a number of fans are mounted to a rear side of the cabinet server for dissipating heat for the storage apparatuses and the server units. However, the airflow of the fans flowing through the storage apparatuses and the server units cannot be adjusted.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, all the views are schematic, and like reference numerals designate corresponding parts throughout the several views.
The disclosure, including the accompanying drawings, is illustrated by way of examples and not by way of limitation. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one”.
The storage apparatus 20 comprises a rectangular shell 22 and a plurality of hard disk drives (HDD) 25 received in the shell 22.
The server unit 30 comprises a rectangular chassis 32, a plurality of hard disk drives (HDD) 33 received in the chassis 32, and a motherboard 35. The chassis 32 comprises a bottom plate 321, two side plates 323 perpendicularly extending up from two opposite sides of the bottom plate 321, a front end plate 325 extending up from a front end of the bottom plate 321 and connected between the side plates 323, and a rear end plate 326 extending up from a rear end of the bottom plate 321 and connected between the side plates 323. The bottom plate 321, the side plates 323, the front end plate 325, and the rear end plate 326 cooperatively bound a receiving space 322. The motherboard 35 is received in the receiving space 322, adjacent to the front end plate 325. The HDDs 33 are located on the bottom plate 321, adjacent to the rear end plate 326. The bottom plate 321 defines a row of air inlets 327 located between the rear end plate 236 and the HDDs 33. The air inlets 327 are arrayed along a lengthwise direction of the rear end plate 326. The bottom plate 321 defines two spaced mounting holes 324 adjacent to the air inlets 327 and between the inlets 327 and the HDDs 33. The rear end plate 326 defines a plurality of air outlets 328 arrayed along the lengthwise direction of the rear end plate 326. The front end plate 325 defines a plurality of vents 329.
Each exhaust fan 50 comprises an air inlet 52 and an air outlet 55.
Referring to
The bottom plate 321 of the server unit 30 is covered on the shell 22. The bottom plate 321 and a top portion of the shell 22 cooperatively bound an airflow channel 26 communicating with the air inlets 327. The air inlet 52 of each exhaust fan 55 is partitioned into a first air inlet 523 communicating with the corresponding air inlet 327 and a second air inlet 525 communicating with the receiving space 322 by the corresponding shielding plate 63. The air adjusting member 60 is slid along the fasteners 68 to change the opening size of the first air inlet 523 and the second air inlet 525.
If the server unit 30 generates a great amount of heat. The fasteners 68 are loosened. The air adjusting member 60 is slid toward the rear end plate 326 by operating the operation bars 66, thereby increasing an opening size of the second air inlet 525, to increase the airflow of the exhaust fans 50 flowing through the receiving space 322. The fasteners 68 are then tightened.
If the storage apparatus 20 generates a great amount of heat. The fasteners 68 are loosened. The air adjusting member 60 is slid away from the rear end plate 326 by operating the operation bars 66, thereby increasing the opening size of the first air inlet 523, to increase the airflow of the exhaust fans 50 flowing through the airflow channel 26. The fasteners 68 are then tightened.
It is to be understood, that even though numerous characteristics and advantages of the embodiment have been set forth in the foregoing description, together with details of the structure and function of the embodiment, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and arrangement of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0678094 | Dec 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6594148 | Nguyen et al. | Jul 2003 | B1 |
6909603 | Wiley | Jun 2005 | B2 |
7430117 | Shabany | Sep 2008 | B2 |
7791894 | Bechtolsheim | Sep 2010 | B2 |
7859839 | Wada | Dec 2010 | B2 |
7911789 | Sasagawa et al. | Mar 2011 | B2 |
8089754 | Peng et al. | Jan 2012 | B2 |
8811020 | Song et al. | Aug 2014 | B2 |
8879252 | Kelaher et al. | Nov 2014 | B2 |
20040172642 | Ding et al. | Sep 2004 | A1 |
20080310097 | Sherrod et al. | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20150173250 A1 | Jun 2015 | US |